189 resultados para Film animalier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

When Dino De Laurentiis died in October 2010, most media outlets, including Australian based publications and services reported the news and most newspapers carried obituaries. Obituarists described Dino’s many failures in great detail; as film historian David Thomson wrote in The Guardian ‘there were enough bombs from Dino to level a large city’ (Thomson 2010). But Dino was also responsible in no small way for the building of new media cities in Rome, in North Carolina, and in Queensland. In this article, we draw on some of our research for that book to outline in more detail the importance of Dino De Laurentiis’s involvement to the Gold Coast studios and to film and television production in Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon microcoils (CMCs) have been coated with a Ni nanoparticle film using an electroless plating process. The morphology, the elemental composition and the phases in the coating layer, complex permittivity and permeability of the CMCs and Ni-coated CMCs were, respectively, investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microwave vector network analysis at room temperature. A homogeneous dispersion of Ni nanoparticles on the outer surface of the CMCs was obtained, with a mean particle size of ∼34.4 nm and the phosphorus content of about 8.5 wt%. When comparing the coated and uncoated CMC samples, the real (ε′) and imaginary (ε″) part of the complex permittivity as well as dielectric dissipation factor (tgδε = ε″/ε′) of the Ni-coated CMCs were much smaller, while the real (μ′) and imaginary (μ″) part of the complex permeability and the magnetic dissipation factor (t g σμ = μ″ / μ′) were larger. The enhanced microwave absorption of Ni-coated CMCs resulted from stronger dielectric and magnetic losses. In contrast, the microwave absorption of uncoated CMCs was mainly attributed to the dielectric rather than magnetic losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigation of functionally graded calcium phosphate-based bio-active films on Ti-6A1-4V orthopaedic alloy prepared in an RF magnetron sputtering plasma reactor is reported. The technique involves concurrent sputtering of Hydroxyapatite (HA) and Ti targets, which results in remarkably enhanced adhesion of the film to the substrate and stability of the interface. The films have been characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XPS data show that the films are composed of O, Ca, P and Ti, and reveal the formation of O=P groups and hybridization of O-Ca-P. The XRD pattern shows that the Ca-P thin films are of crystalline calcium oxide phosphate (4CaO·P2O5) with preferred orientation varying with processing parameters. High-resolution optical emission spectra show that the emission of CaO is dominant. The CaO, PO and CaPO species are strongly influenced by deposition conditions. The introduction of Ti element during deposition provides a stable interface between bio-inert substrates Ti-6A1-4V and bioactive HA coating. In-vitro cell culturing tests suggest excellent biocompatibility of the Ca-P-Ti films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of numerical simulation of the equilibrium parameters of a low pressure nanopowder-generating discharge in silane for the plasma enhanced chemical vapor deposition (PECVD) of nanostructured silicon-based films are presented. It is shown that a low electron temperature and a low density of negative SiH3 - ions are favorable for the PECVD process. This opens a possibility to predict the main parameters of the reactive plasma and plasma-nucleated nanoparticles, and hence, to control the quality of silicon nanofilms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of plasmon oscillations on the DC tunnel current in a gold nanoisland thin film (GNITF) is investigated using low intensity P~1W/cm2 continuous wave lasers. While DC voltages (1–150 V) were applied to the GNITF, it was irradiated with lasers at different wavelengths (k¼473, 532, and 633 nm). Because of plasmon oscillations, the tunnel current increased. It is found that the tunnel current enhancement is mainly due to the thermal effect of plasmon oscillations rather than other plasmonic effects. The results are highly relevant to applications of plasmonic effects in opto-electronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface enhanced Raman scattering effect has shown immense potential for detecting trace amounts of explosive vapor molecules. To date, efforts to produce a commercially available, reliable SERS sensor have been impeded by an inability to separate the electromagnetic enhancement produced by the metallic nanostructure from other signal enhancing effects. Here, we show a new Raman sensor that uses surface acoustic waves (SAWs) to produce controllable surface structures on gold films deposited on LiNbO3 substrates that modulate the Raman signal of a target compound (thiophenol) adsorbed on the films. We demonstrate that this sensor can dynamically control the Raman signal simply by changing the SAW’s amplitude, allowing the Raman signal enhancement factor to be directly measured with no variation in the concentration of the target compound. The physically adsorbed molecules can be removed from the sensor without physical cleaning or damage, making it possible to reuse it for real-time Raman detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, the performance characteristics of top-gate and dual-gate thin-film transistors (TFTs) with active semiconductor layers consisting of diketopyrrolopyrrole-naphthalene copolymer are described. Optimized top-gate TFTs possess mobilities of up to 1 cm 2 /V s with low contact resistance and reduced hysteresis in air. Dual-gate devices possess higher drive currents as well as improved subthreshold and above threshold characteristics compared to single-gate devices. We also describe the reasons that dual-gate devices result in improved performance. The good stability of this polymer combined with their promising electrical properties make this material a very promising semiconductor for printable electronics.