198 resultados para Ethanol dehydration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE Mackay Renewable Biocommodities Pilot Plant is a pilot scale facility owned and operated by QUT for research and demonstration of the conversion of lignocellulosic biomass such as sugarcane bagasse into biofuels. The pilot plant accommodates unique state-of-the-art equipment to process a wide range of feedstocks and is strategically located on the site of the Mackay Sugar Ltd Racecourse Mill. Major facilities include a biomass handling system, pre-treatment reactor, saccharification reactor, fermentors, distillation column and bioseparations equipment. This paper provides an update on the design, construction, commissioning and start-up of the facility. In addition, the paper provides results from preliminary facility trials on the pre-treatment of sugarcane bagasse for cellulosic ethanol production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bomb technicians perform their work while encapsulated in explosive ordnance disposal (EOD) suits. Designed primarily for safety, these suits have an unintended consequence of impairing the body’s natural mechanisms for heat dissipation. Purpose: To quantify the heat strain encountered during an EOD operational scenario in the tropical north of Australia. Methods: All active police male bomb technicians, located in a tropical region of Australia (n=4, experience 7 ± 2.1 yrs, age 34 ± 2 yrs, height 182.3 ± 5.4 cm, body mass 95 ± 4 kg, VO2max 46 ± 5.7 ml.kg-1.min-1) undertook an operational scenario wearing the Med-Eng EOD 9 suit and helmet (~32 kg). The climatic conditions ranged between 27.1–31.8°C ambient temperature, 66-88% relative humidity, and 30.7-34.3°C wet bulb globe temperature. The scenario involved searching a two story non air-conditioned building for a target; carrying and positioning equipment for taking an X-ray; carrying and positioning equipment to disrupt the target; and finally clearing the site. Core temperature and heart rate were continuously monitored, and were used to calculate a physiological strain index (PSI). Urine specific gravity (USG) assessed hydration status and heat associated symptomology were also recorded. Results: The scenario was completed in 121 ± 22 mins (23.4 ± 0.4% work, 76.5 ± 0.4% rest/recovery). Maximum core temperature (38.4 ± 0.2°C), heart rate (173 ± 5.4 bpm, 94 ± 3.3% max), PSI (7.1 ± 0.4) and USG (1.031 ± 0.002) were all elevated after the simulated operation. Heat associated symptomology highlighted that moderate-severe levels of fatigue and thirst were universally experienced, muscle weakness and heat sensations experienced by 75%, and one bomb technician reported confusion and light-headedness. Conclusion: All bomb technicians demonstrated moderate-high levels of heat strain, evidenced by elevated heart rate, core body temperature and PSI. Severe levels of dehydration and noteworthy heat-related symptoms further highlight the risks to health and safety faced by bomb technicians operating in tropical locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Undernutrition, weight loss and dehydration are major clinical issues for people with dementia in residential care, with excessive weight loss contributing to increased risk of frailty, immobility, illness and premature morbidity. This paper discusses a nutritional knowledge and attitudes survey conducted as part of a larger project focused on improving nutritional intake of people with dementia within a residential care facility in Brisbane, Australia. Aims The specific aims of the survey were to identify (i) knowledge of the nutritional needs of aged care facility residents; (ii) mealtime practices; and (iii) attitudes towards mealtime practices and organisation. Methods A survey based on those used in other healthcare settings was completed by 76 staff members. The survey included questions about nutritional knowledge, opinions of the food service, frequency of feeding assistance provided and feeding assessment practices. Results Nutritional knowledge scores ranged from 1 to 9 of a possible 10, with a mean score of 4.67. While 76% of respondents correctly identified risk factors associated with malnutrition in nursing home residents, only 38% of participants correctly identified the need for increased protein and energy in residents with pressure ulcers, and just 15% exhibited correct knowledge of fluid requirements. Further, while nutritional assessment was considered an important part of practice by 83% of respondents, just 53% indicated that they actually carried out such assessments. Identified barriers to promoting optimal nutrition included insufficient time to observe residents (56%); being unaware of residents' feeding issues (46%); poor knowledge of nutritional assessments (44%); and unappetising appearance of food served (57%). Conclusion An important step towards improving health and quality of life for residents of aged care facilities would be to enhance staff nutritional awareness and assessment skills. This should be carried out through increased attention to both preservice curricula and on-the-job training. Implications for practice The residential facility staff surveyed demonstrated low levels of nutrition knowledge, which reflects findings from the international literature. This has implications for the provision of responsive care to residents of these facilities and should be explored further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper will focus on the legal issues associated with people displaced as a result of water scarcity. Human displacement can lead to internal displacement (displacement of people within their country) and external displacement (displacement of people into another country). If the displacement takes place as a result of climate change these people may be referred to as climate refugees. The majority of work on climate refugees has focused on those people that will lose their homes as a result of sea –level rise. The number of people that could be displaced as a result of prolonged drought and lack of adequate water supplies is likely to be far more significant in number. There are estimates that around 2.8 billion people will suffer water shortages by 2025 and many of these people are at increased risk of internal or external displacement. Certain groups are more likely to be displaced as a result of prolonged drought or water scarcity. These groups include indigenous and minorities groups living in areas that are more susceptible to climate change and groups living in areas with a history of water shortage and supply issues. People displaced as a result of water scarcity are at increased risks of malnutrition and of dehydration. Furthermore the lack of adequate water supplies in such areas increases the risk and spread of disease among the population. In certain instances internal and external displacement may lead to escalation of conflict and competition for water resources in newly settled territories. This paper will use case studies from Australia (indigenous groups and rural landholders) and East Africa (Ethiopia, Sudan and Kenya) to demonstrate the significance of human displacement arising as a result of water scarcity. Climate adaptation policy frameworks will need to address a number of legal issues, arising as a result of climate displacement from water scarcity. There are a number of unresolved legal issues for both categories of environmental displaced people. The major legal issue for externally environmentally displaced people is lack of international recognition and support for these people. The Climate Change Convention, the Refugee Convention, the Desertification Convention and Human Rights instruments all fail to provide recognition for people externally displaced as a result of environmental conditions. Similarly there is a lack of legal recognition and legal support mechanisms to assist those people internally displaced by environmental conditions. The lack of developed environmental rights in most countries contributes to this problem. Polices and governance frameworks must be put in place which aims to prevent such displacement through programs identifying populations at risk and instigating damage mitigation and relocation programs. In addition there are a number of legal issues which may arise such as; rights of compensation, property and tenure disputes, increases on the water demand and environmental degradation in places of relocation and jurisdictional issues arising in federal countries. This paper will provide an overview of the legal issues at the international and national levels arising as a result of climate displacement from water scarcity.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have compared the effects of different sterilization techniques on the properties of Bombyx mori silk fibroin thin films with the view to subsequent use for corneal tissue engineering. The transparency, tensile properties, corneal epithelial cell attachment and degradation of the films were used to evaluate the suitability of certain sterilization techniques including gamma-irradiation (in air or nitrogen), steam treatment and immersion in aqueous ethanol. The investigations showed that gamma-irradiation, performed either in air or in a nitrogen atmosphere, did not significantly alter the properties of films. The films sterilized by gamma-irradiation or by immersion in ethanol had a transparency greater than 98% and tensile properties comparable to human cornea and amniotic membrane, the materials of choice in the reconstruction of ocular surface. Although steam-sterilization produced stronger, stiffer films, they were less transparent, and cell attachment was affected by the variable topography of these films. It was concluded that gamma-irradiation should be considered to be the most suitable method for the sterilization of silk fibroin films, however, the treatment with ethanol is also an acceptable method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palygorskite has a fibrous like morphology with a distinctive layered appearance. The simplified formula of palygorskite (Mg5Si8O20(OH)2(OH2)4 nH2O) indicates that two different types of water are present. The dehydration and rehydration of palygorskite have been studied using thermogravimetry and H2O-tem- perature programmed desorption. X-ray diffractograms, NH3 adsorption profiles, and NH3 desorption profiles were obtained for thermally treated palygorskite as a function of temperature. The results proved water molecules were mainly derived from Si–OH units. In addition, five kinds of acid sites were found for palygorskite. The number of acid sites of external surfaces was larger than that of the internal sur- faces. Bonding on the internal surface acid sites was stronger than the bonding of the external surfaces. Rehydration restored the folded structure of palygorskite when thermal treatment temperature was lower than 300 oC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire safety design is important to eliminate the loss of property and lives during fire events. Gypsum plasterboard is widely used as a fire safety material in the building industry all over the world. It contains gypsum (CaSO4.2H2O) and Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Currently plasterboard manufacturers use additives such as vermiculite to overcome shrinkage of gypsum core and glass fibre to bridge shrinkage cracks and enhance the integrity of board during calcination and after the loss of paper facings in fires. Past research has also attempted to reduce the thermal conductivity of plasterboards using fillers. However, no research has been undertaken to enhance the specific heat of plasterboard and the points of dehydration using chemical additives and fillers. Hence detailed experimental studies of powdered samples of plasterboard mixed with chemical additives and fillers in varying proportions were conducted. These tests showed the enhancement of specific heat of plasterboard. Numerical models were also developed to investigate the thermal performance of enhanced plasterboards under standard fire conditions. The results showed that the use of these enhanced plasterboards in steel wall systems can significantly improve their fire performance. This paper presents the details of this research and the results that can be used to enhance the fire safety of steel wall systems commonly used in buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine the impact of a free-choice diet on nutritional intake and body condition of feral horses. Animals: Cadavers of 41 feral horses from 5 Australian locations. Procedures: Body condition score (BCS) was determined (scale of 1 to 9), and the stomach was removed from horses during postmortem examination. Stomach contents were analyzed for nutritional variables and macroelement and microelement concentrations. Data were compared among the locations and also compared with recommended daily intakes for horses. Results: Mean BCS varied by location; all horses were judged to be moderately thin. The BCS for males was 1 to 3 points higher than that of females. Amount of protein in the stomach contents varied from 4.3% to 14.9% and was significantly associated with BCS. Amounts of water-soluble carbohydrate and ethanol-soluble carbohydrate in stomach contents of feral horses from all 5 locations were higher than those expected for horses eating high-quality forage. Some macroelement and microelement concentrations were grossly excessive, whereas others were grossly deficient. There was no evidence of ill health among the horses. Conclusions and Clinical Relevance: Results suggested that the diet for several populations of feral horses in Australia appeared less than optimal. However, neither low BCS nor trace mineral deficiency appeared to affect survival of the horses. Additional studies on food sources in these regions, including analysis of water-soluble carbohydrate, ethanol-soluble carbohydrate, and mineral concentrations, are warranted to determine the provenance of such rich sources of nutrients. Determination of the optimal diet for horses may need revision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The name apophyllite refers to a specific group of phyllosilicates, a class of minerals that also includes the micas and are a class of minerals of similar chemical makeup that comprise a solid solution series, and includes the members apophyllite-(KF), apophyllite-(KOH) and apophyllite-(NaF). Fluorapophyllite apophyllite-(KF) and hydroxyapophyllite apophyllite-(KOH) are different minerals only because of the difference in percentages of fluorine to hydroxyl ions. Three apophyllite minerals have been characterised by thermogravimetric analysis and infrared spectroscopy. Dehydration takes place in several steps. Major mass losses occur at around 205–220 °C and at 400–429 °C. Minor mass losses are observed around 242–292 °C. It is proposed that dehydration occurs in the first decomposition step. Water is lost over the temperature range 125–250, 250–325 and 325–525 °C with the loss of 4.5, 0.5 and 3.0 mol of water. Water functions as zeolitic water and is also coordinated to the silica surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The optimisation study of the fabrication of a compact TiO2 blocking layer (via Spray Pyrolysis Deposition) for poly (3-hexylthiopene) (P3HT) for Solid State Dye Sensitized Solar Cells (SDSCs) is reported. We used a novel spray TiO2 precursor solution composition obtained by adding acetylacetone to a conventional formulation (Diisopropoxytitanium bis (acetylacetonate) in ethanol). By Scanning Electron Microscopy a TiO2 layer with compact morphology and thickness of around 100 nmis shown. Through a Tafel plot analysis an enhancement of the device diode-like behaviour induced by the acetylacetone blocking layer respect to the conventional one is observed. Significantly, the device fabricatedwith the acetylacetone blocking layer shows an overall increment of the cell performance with respect to the cellwith the conventional one (DJsc/Jsc = +13.8%, DFF/FF = +39.7%, DPCE/PCE = +55.6%). A conversion efficiency optimumis found for 15 successive spray cycles where the diode-like behaviour of the acetylacetone blocking layer is more effective. Over three batches of cells (fabricated with P3HT and dye D35) an average conversion efficiency value of 3.9% (under a class A sun simulator with 1 sun A.M. 1.5 illumination conditions) was measured. From the best cell we fabricated a conversion efficiency value of 4.5% was extracted. This represents a significant increment with respect to previously reported values for P3HT/dye D35 based SDSCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal decomposition of hydronium jarosite and ammoniojarosite was studied using thermogravimetric analysis and mass spectrometry, in situ synchrotron X-ray diffraction and infrared emission spectroscopy. There was no evidence for the simultaneous loss of water and sulfur dioxide during the desulfonation stage as has previously been reported for hydronium jarosite. Conversely, all hydrogen atoms are lost during the dehydration and dehydroxylation stage from 270 to 400 °C and no water, hydroxyl groups or hydronium ions persist after 400 °C. The same can be said for ammoniojarosite. The first mass loss step during the decomposition of hydronium jarosite has been assigned to the loss of the hydronium ion via protonation of the surrounding hydroxyl groups to evolve two water molecules. For ammoniojarosite, this step corresponds to the protonation of a hydroxyl group by ammonium, so that ammonia and water are liberated simultaneously. Iron(II) sulfate was identified as a possible intermediate during the decomposition of ammoniojarosite (421–521 °C) due to a redox reaction between iron(III) and the liberated ammonia during decomposition. Iron(II) ions were also confirmed with the 1,10-phenanthroline test. Iron(III) sulfate and other commonly suggested intermediates for hydronium and ammoniojarosite decomposition are not major crystalline phases; if they are formed, then they most likely exist as an amorphous phase or a different low temperature phases than usual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dehydration of food materials requires water removal from it. This removal of moisture prevents the growth and reproduction of microorganisms that cause decay and minimizes many of the moisture-driven deterioration reactions (Brennan, 1994). However, during food drying, many other changes occur simultaneously resulting in a modified overall quality (Kompany et al., 1993). Among the physical attributes of dried food material porosity and microstructure are the important ones that can dominant other quality of dried foods (Aguilera et al., 2000). In addition, this two concerned quality attributes affected by process conditions, material components and raw structure of food stuff. In this work, temperature moisture distribution within food materials during microwave drying will be taken into consideration to observe its participation on the microstructure and porosity of the finished product. Apple is the selective materials for this work. Generally, most of the food materials are found in non-uniformed moisture contained condition. To develop non uniform temperature distribution, food materials have been dried in a microwave oven with different power levels (Chua et al., 2000). First of all, temperature and moisture model is simulated by COMSOL Multiphysics. Later on, digital imaging camera and Image Pro Premier software have been deployed to observation moisture distribution and thermal imaging camera for temperature distribution. Finally, Microstructure and porosity of the food materials are obtained from scanning electron microscope and porosity measuring devices respectively . Moisture distribution and temperature during drying influence the microstructure and porosity significantly. Specially, High temperature and moisture contained regions show less porosity and more rupture. These findings support other literatures of Halder et al. (2011) and Rahman et al (1990). On the other hand, low temperature and moisture regions depict uniform microstructure and high porosity. This work therefore assists in better understanding of the role of moisture and temperature distribution to a prediction of micro structure and porosity of dried food materials.