123 resultados para Environmental management system


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on ongoing research to develop a design theory for classes of information systems that allow for work practices that exhibit a minimal harmful impact on the natural environment. We call such information systems Green IS. In this paper we describe the building blocks of our Green IS design theory, which develops prescriptions for information systems that allow for: (1) belief formation, action formation and outcome measurement relating to (2) environmentally sustainable work practices and environmentally sustainable decisions on (3) a macro or micro level. For each element, we specify structural features, symbolic expressions, user abilities and goals required for the affordances to emerge. We also provide a set of testable propositions derived from our design theory and declare two principles of implementation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Economic valuation of ecosystem services is widely advocated as a useful decision-support tool for ecosystem management. However, the extent to which economic valuation of ecosystem services is actually used or considered useful in decision-making is poorly documented. This literature blindspot is explored with an application to coastal and marine ecosystems management in Australia. Based on a nation-wide survey of eighty-eight decision-makers representing a diversity of management organizations, the perceived usefulness and level of use of ecosystem services economic valuation in support of coastal and marine management are examined. A large majority of decision-makers are found to be familiar with economic valuation and consider it useful - even necessary - in decision-making, although this varies across decision-makers groups. However, most decision-makers never or rarely use it. The perceived level of importance and trust in estimated dollar values differ across ecosystem services, and are especially high for values that relate to commercial activities. A number of factors are also found to influence respondent’s use of economic valuation. Such findings concur with conclusions from other existing works, and are instructive to reflect on the issue of the usefulness of ESV in environmental management decision-making. They also confirm that the survey-based approach developed in this application represents a sound strategy to examine this issue at various scales and management levels.