494 resultados para Dynamic Failure
Resumo:
An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.
Resumo:
Future air traffic management concepts often involve the proposal of automated separation management algorithms that replaces human air traffic controllers. This paper proposes a new type of automated separation management algorithm (based on the satisficing approach) that utilizes inter-aircraft communication and a track file manager (or bank of Kalman filters) that is capable of resolving conflicts during periods of communication failure. The proposed separation management algorithm is tested in a range of flight scenarios involving during periods of communication failure, in both simulation and flight test (flight tests were conducted as part of the Smart Skies project). The intention of the conducted flight tests was to investigate the benefits of using inter-aircraft communication to provide an extra layer of safety protection in support air traffic management during periods of failure of the communication network. These benefits were confirmed.
Resumo:
This chapter considers how teachers can make a difference to the kinds of literacy young people take up. Increasingly, researchers and policy-makers see literacy as an ensemble of socio-cultural situated practices rather than as a unitary skill. Accordingly, the differences in what young people come to do with literacy, in and out of school, confront us more directly. If literacy development involves assembling dynamic repertoires of practices, it is crucial to consider what different groups of children growing up and going to school in different places have access to and make investments in over time; the kinds of literate communities from which some are excluded or included; and how educators make a difference to the kinds of literate trajectories and identities young people put together.
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation and can also improve productivity and enhance system’s safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. Although a variety of prognostic methodologies have been reported recently, their application in industry is still relatively new and mostly focused on the prediction of specific component degradations. Furthermore, they required significant and sufficient number of fault indicators to accurately prognose the component faults. Hence, sufficient usage of health indicators in prognostics for the effective interpretation of machine degradation process is still required. Major challenges for accurate longterm prediction of remaining useful life (RUL) still remain to be addressed. Therefore, continuous development and improvement of a machine health management system and accurate long-term prediction of machine remnant life is required in real industry application. This thesis presents an integrated diagnostics and prognostics framework based on health state probability estimation for accurate and long-term prediction of machine remnant life. In the proposed model, prior empirical (historical) knowledge is embedded in the integrated diagnostics and prognostics system for classification of impending faults in machine system and accurate probability estimation of discrete degradation stages (health states). The methodology assumes that machine degradation consists of a series of degraded states (health states) which effectively represent the dynamic and stochastic process of machine failure. The estimation of discrete health state probability for the prediction of machine remnant life is performed using the ability of classification algorithms. To employ the appropriate classifier for health state probability estimation in the proposed model, comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault data of three different faults in a high pressure liquefied natural gas (HP-LNG) pump. As a result of this comparison study, SVMs were employed in heath state probability estimation for the prediction of machine failure in this research. The proposed prognostic methodology has been successfully tested and validated using a number of case studies from simulation tests to real industry applications. The results from two actual failure case studies using simulations and experiments indicate that accurate estimation of health states is achievable and the proposed method provides accurate long-term prediction of machine remnant life. In addition, the results of experimental tests show that the proposed model has the capability of providing early warning of abnormal machine operating conditions by identifying the transitional states of machine fault conditions. Finally, the proposed prognostic model is validated through two industrial case studies. The optimal number of health states which can minimise the model training error without significant decrease of prediction accuracy was also examined through several health states of bearing failure. The results were very encouraging and show that the proposed prognostic model based on health state probability estimation has the potential to be used as a generic and scalable asset health estimation tool in industrial machinery.
Resumo:
In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
Numerous econometric models have been proposed for forecasting property market performance, but limited success has been achieved in finding a reliable and consistent model to predict property market movements over a five to ten year timeframe. This research focuses on office rental growth forecasts and overviews many of the office rent models that have evolved over the past 20 years. A model by DiPasquale and Wheaton is selected for testing in the Brisbane, Australia office market. The adaptation of this study did not provide explanatory variables that could assist in developing a reliable, predictive model of office rental growth. In light of this result, the paper suggests a system dynamics framework that includes an econometric model based on historical data as well as user input guidance for the primary variables. The rent forecast outputs would be assessed having regard to market expectations and probability profiling undertaken for use in simulation exercises. The paper concludes with ideas for ongoing research.
Resumo:
Public awareness of large infrastructure projects, many of which are delivered through networked arrangements is high for several reasons. These projects often involve significant public investment; they may involve multiple and conflicting stakeholders and can potentially have significant environmental impacts (Lim and Yang, 2008). To produce positive outcomes from infrastructure delivery it is imperative that stakeholder “buy in” be obtained particularly about decisions relating to the scale and location of infrastructure. Given the likelihood that stakeholders will have different levels of interest and investment in project outcomes, failure to manage this dynamic could potentially jeopardise project delivery by delaying or halting the construction of essential infrastructure. Consequently, stakeholder engagement has come to constitute a critical activity in infrastructure development delivered through networks. This paper draws on stakeholder theory and governance network theory and provides insights into how three multi-level networks within the Roads Alliance in Queensland engage with stakeholders in the delivery of road infrastructure. New knowledge about stakeholders has been obtained by testing a model of Stakeholder Salience and Engagement which combines and extends the stakeholder identification and salience theory and the ladder of stakeholder management and engagement. By applying this model, the broad research question: “How do governance networks engage with stakeholders?” has been addressed. A multiple embedded case study design was selected as the overall approach to explore, describe, explain and evaluate how stakeholder engagement occurred in three governance networks delivering road infrastructure in Queensland. The outcomes of this research contribute to and extend stakeholder theory by showing how stakeholder salience impacts on decisions about the types of engagement processes implemented. Governance network theory is extended by showing how governance networks interact with stakeholders. From a practical perspective this research provides governance networks with an indication of how to more effectively undertake engagement with different types of stakeholders.
Resumo:
Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the deformation properties of Cu nanowires with different single defects under dynamic compression have been studied. The mechanical behaviours of the perfect nanowire are first studied, and the critical stress decreases with the increase of the nanowire’s length, which is well agreed with the modified Euler theory. We then consider the effects to the buckling phenomenon resulted from different defects. It is found that obvious decrease of the critical stress is resulted from different defects, and the largest decrease is found in nanowire with the surface vertical defect. Surface defects are found exerting larger influence than internal defects. The buckling duration is found shortened due to different defects except the nanowire with surface horizon defect, which is also found possessing the largest deflection. Different deflections are also observed for different defected nanowires. It is find that due to surface defects, only deflection in one direction is happened, but for internal defects, more complex deflection circumstances are observed.
Resumo:
Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area highspeed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring’s regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion,this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.
Resumo:
Background Chronic heart failure (CHF) is associated with high hospitalisation and mortality rates and debilitating symptoms. In an effort to reduce hospitalisations and improve symptoms individuals must be supported in managing their condition. Patients who can effectively self-manage their symptoms through lifestyle modification and adherence to complex medication regimens will experience less hospitalisations and other adverse events. Aim The purpose of this paper is to explain how providing evidence-based information, using patient education resources, can support self-care. Discussion Self-care relates to the activities that individuals engage in relation to health seeking behaviours. Supporting self-care practices through tailored and relevant information can provide patients with resources and advice on strategies to manage their condition. Evidence-based approaches to improve adherence to self-care practices in patients with heart failure are not often reported. Low health literacy can result in poor understanding of the information about CHF and is related to adverse health outcomes. Also a lack of knowledge can lead to non-adherence with self-care practices such as following fluid restriction, low sodium diet and daily weighing routines. However these issues need to be addressed to improve self-management skills. Outcome Recently the Heart Foundation CHF consumer resource was updated based on evidence-based national clinical guidelines. The aim of this resource is to help consumers improve understanding of the disease, reduce uncertainty and anxiety about what to do when symptoms appear, encourage discussions with local doctors, and build confidence in self-care management. Conclusion Evidence-based CHF patient education resources promote self-care practices and early detection of symptom change that may reduce hospitalisations and improve the quality of life for people with CHF.