266 resultados para Dna Marker
Resumo:
Results of Duffy (Fy) linkage confirm genetic heterogeneity in Charcot-Marie-Tooth disease type 1 (CMT1). Of 11 families informative for Fy, four showed probable linkage with CMT1, seven showed probable non-linkage and two showed definite non-linkage. These results suggest that Fy linked CMT1 may be less common than previously thought. These results combined with those of another DNA probe for the antithrombin III gene confirm that there are at least two gene loci for CMT1, termed 1A and 1B.
Resumo:
As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.
Resumo:
Purpose: To develop, using dacarbazine as a model, reliable techniques for measuring DNA damage and repair as pharmacodynamic endpoints for patients receiving chemotherapy. Methods: A group of 39 patients with malignant melanoma were treated with dacarbazine 1 g/m2 i.v. every 21 days. Tamoxifen 20 mg daily was commenced 24 h after the first infusion and continued until 3 weeks after the last cycle of chemotherapy. DNA strand breaks formed during dacarbazine-induced DNA damage and repair were measured in individual cells by the alkaline comet assay. DNA methyl adducts were quantified by measuring urinary 3-methyladenine (3-MeA) excretion using immunoaffinity ELISA. Venous blood was taken on cycles 1 and 2 for separation of peripheral blood lymphocytes (PBLs) for measurement of DNA strand breaks. Results: Wide interpatient variation in PBL DNA strand breaks occurred following chemotherapy, with a peak at 4 h (median 26.6 h, interquartile range 14.75- 40.5 h) and incomplete repair by 24 h. Similarly, there was a range of 3-MeA excretion with peak levels 4-10 h after chemotherapy (median 33 nmol/h, interquartile range 20.448.65 nmol/h). Peak 3-MeA excretion was positively correlated with DNA strand breaks at 4 h (Spearman's correlation coefficient, r = 0.39, P = 0.036) and 24 h (r = 0.46, P = 0.01). Drug-induced emesis correlated with PBL DNA strand breaks (Mann Whitney U-test, P = 0.03) but not with peak 3-MeA excretion. Conclusions: DNA damage and repair following cytotoxic chemotherapy can be measured in vivo by the alkaline comet assay and by urinary 3-MeA excretion in patients receiving chemotherapy.
Resumo:
The majority of patients with non-small-cell lung cancer (NSCLC) present with advanced disease, with targeted therapies providing some improvement in clinical outcomes. The epidermal growth factor receptor (EGFR) tyrosine kinase (TK) plays an important role in the pathogenesis of NSCLC. Tyrosine kinase inhibitors (TKIs), which target the EGFR TK domain, have proven to be an effective treatment strategy; however, patient responses to treatment vary considerably. Therefore, the identification of patients most likely to respond to treatment is essential to optimise the benefit of TKIs. Tumour-associated activating mutations in EGFR can identify patients with NSCLC who are likely to have a good response to TKIs. Nonetheless, the majority of patients relapse within a year of starting treatment. Studies of tumours at relapse have demonstrated expression of a T790M mutation in exon 20 of the EGFR TK domain in approximately 50% of cases. Although conferring resistance to reversible TKIs, these patients may remain sensitive to new-generation irreversible/panerb inhibitors. A number of techniques have been employed for genotypic assessment of tumourassociated DNA to identify EGFR mutations, each of which has advantages and disadvantages. This review presents an overview of the current methodologies used to identify such molecular markers. Recent developments in technology may make the monitoring of changes in patients' tumour genotypes easier in clinical practice, which may enable patients' treatment regimens to be tailored during the course of their disease, potentially leading to improved patient outcomes.
Resumo:
Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.
Resumo:
Mesothelioma is a rare malignancy arising from mesothelial cells lining the pleura and peritoneum. Advances in modern technology have allowed the development of array based approaches to the study of disease allowing researchers the opportunity to study many genes or proteins in a high-throughput fashion. This review describes the current knowledge surrounding array based approaches with respect to mesothelioma research. © 2009 by the International Association for the Study of Lung Cancer.
Resumo:
Introduction: Malignant pleural mesothelioma (MPM) is a rapidly fatal malignancy that is increasing in incidence. The caspase 8 inhibitor FLIP is an anti-apoptotic protein over-expressed in several cancer types including MPM. The histone deacetylase (HDAC) inhibitor Vorinostat (SAHA) is currently being evaluated in relapsed mesothelioma. We examined the roles of FLIP and caspase 8 in regulating SAHA-induced apoptosis in MPM. Methods: The mechanism of SAHA-induced apoptosis was assessed in 7 MPM cell lines and in a multicellular spheroid model. SiRNA and overexpression approaches were used, and cell death was assessed by flow cytometry, Western blotting and clonogenic assays. Results: RNAi-mediated FLIP silencing resulted in caspase 8-dependent apoptosis in MPM cell line models. SAHA potently down-regulated FLIP protein expression in all 7 MPM cell lines and in a multicellular spheroid model of MPM. In 6/7 MPM cell lines, SAHA treatment resulted in significant levels of apoptosis induction. Moreover, this apoptosis was caspase 8-dependent in all six sensitive cell lines. SAHA-induced apoptosis was also inhibited by stable FLIP overexpression. In contrast, down-regulation of HR23B, a candidate predictive biomarker for HDAC inhibitors, significantly inhibited SAHA-induced apoptosis in only 1/6 SAHA-sensitive MPM cell lines. Analysis of MPM patient samples demonstrated significant inter-patient variations in FLIP and caspase 8 expressions. In addition, SAHA enhanced cisplatin-induced apoptosis in a FLIP-dependent manner. Conclusions: These results indicate that FLIP is a major target for SAHA in MPM and identifies FLIP, caspase 8 and associated signalling molecules as candidate biomarkers for SAHA in this disease. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fossils and sediments preserved in caves are an excellent source of information for investigating impacts of past environmental changes on biodiversity. Until recently studies have relied on morphology-based palaeontological approaches, but recent advances in molecular analytical methods offer excellent potential for extracting a greater array of biological information from these sites. This study presents a thorough assessment of DNA preservation from late Pleistocene–Holocene vertebrate fossils and sediments from Kelly Hill Cave Kangaroo Island, South Australia. Using a combination of extraction techniques and sequencing technologies, ancient DNA was characterised from over 70 bones and 20 sediment samples from 15 stratigraphic layers ranging in age from >20 ka to ∼6.8 ka. A combination of primers targeting marsupial and placental mammals, reptiles and two universal plant primers were used to reveal genetic biodiversity for comparison with the mainland and with the morphological fossil record for Kelly Hill Cave. We demonstrate that Kelly Hill Cave has excellent long-term DNA preservation, back to at least 20 ka. This contrasts with the majority of Australian cave sites thus far explored for ancient DNA preservation, and highlights the great promise Kangaroo Island caves hold for yielding the hitherto-elusive DNA of extinct Australian Pleistocene species.
Resumo:
Background Tumour necrosis (TN) is recognized to be a consequence of chronic cellular hypoxia. TN and hypoxia correlate with poor prognosis in solid tumours. Methods In a retrospective study the prognostic implications of the extent of TN was evaluated in non-small cell lung cancer (NSCLC) and correlated with clinicopathological variables and expression of epidermal growth factor receptor, Bcl-2, p53 and matrix metalloproteinase-9 (MMP-9). Tissue specimens from 178 surgically resected cases of stage I-IIIA NSCLC with curative intent were studied. The specimens were routinely processed, formalin-fixed and paraffin-embedded. TN was graded as extensive or either limited or absent by two independent observers; disagreements were resolved using a double-headed microscope. The degree of reproducibility was estimated by re-interpreting 40 randomly selected cases after a 4 month interval. Results Reproducibility was attained in 36/40 cases, Kappa score=0.8 P<0.001. TN correlated with T-stage (P=0.001), platelet count (P=0.004) and p53 expression (P=0.031). Near significant associations of TN with N-stage (P=0.063) and MMP-9 expression (P=0.058) were seen. No association was found with angiogenesis (P=0.98). On univariate (P=0.0016) and multivariate analysis (P=0.023) TN was prognostic. Conclusion These results indicate that extensive TN reflects an aggressive tumour phenotype in NSCLC and may improve the predictive power of the TMN staging system. The lack of association between TN and angiogenesis may be important although these variables were not evaluated on serial sections. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Purpose To evaluate carbonic anhydrase (CA) IX as a surrogate marker of hypoxia and investigate the prognostic significance of different patterns of expression in non-small-cell lung cancer (NSCLC). Methods Standard immunohistochemical techniques were used to study CA IX expression in 175 resected NSCLC tumors. CA IX expression was determined by Western blotting in A549 cell lines grown under normoxic and hypoxic conditions. Measurements from microvessels to CA IX positivity were obtained. Results CA IX immunostaining was detected in 81.8% of patients. Membranous (m) (P = .005), cytoplasmic (c) (P = .018), and stromal (P < .001) CA IX expression correlated with the extent of tumor necrosis (TN). The mean distance from vascular endothelium to the start of tumor cell positivity was 90 μm, which equates to an oxygen pressure of 5.77 mmHg. The distance to blood vessels from individual tumor cells or tumor cell clusters was greater if they expressed mCA IX than if they did not (P < .001). Hypoxic exposure of A549 cells for 16 hours enhanced CAIX expression in the nuclear and cytosolic extracts. Perinuclear (p) CA IX (P = .035) was associated with a poor prognosis. In multivariate analysis, pCA IX (P = .004), stage (P = .001), platelet count (P = .011), sex (P = .027), and TN (P = .035) were independent poor prognostic factors. Conclusion These results add weight to the contention that mCA IX is a marker of tumor cell hypoxia. The absence of CA IX staining close to microvessels suggests that these vessels are functionally active. pCA IX expression is representative of an aggressive phenotype. © 2003 by American Society of Clinical Oncology.
Resumo:
Tobacco plants were transformed with a chimeric transgene comprising sequences encoding β-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense ∼22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.
Resumo:
A series of improved vectors have been constructed that are suitable for use in Agrobacterium tumefaciens-mediated monocot transformation. These binary vectors have several useful features, including the selectable marker genes bar (phosphinothricin resistance) or hph (hygromycin resistance) driven by either the cauliflower mosaic virus (CaMV) 35S promoter or the maize ubiquitin promoter, a high-copy-number replication origin that allows reliable mini-prep DNA isolation from Escherichia coli, and a polylinker sequence into which target genes can be easily inserted. A significant improvement has been made to the hph gene by the introduction of an intron into its coding region. The presence of the intron abolishes hph expression in A. tumefaciens, rendering the bacterium susceptible to the selective agent hygromycin B. The use of such an intron-hph vector thus enables the antibiotic in plant culture media to function as both a selective agent for transformed tissue and as a contraselective agent for A. tumefaciens growth, thus minimising the overgrowth of A. tumefaciens on plant tissues during transformation. Furthermore, the intron appears to be correctly spliced in plant cells and significantly enhances hph expression in transformed rice tissue. In our experiments, the use of the intron-hph vector increased the frequency of rice transformation and has enabled the production of transgenic barley.
Resumo:
The gene regulation signals from subterranean clover stunt virus (SCSV) were investigated for their expression in dicot plants. The SCSV genome has at least eight circular DNA molecules. Each circular DNA component contains a promoter element, a single open reading frame and a terminator. The promoters from seven of the segments were examined for their strength and tissue specificity in transgenic tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and cotton (Gossypium hirsutum L.) using a GUS reporter gene assay system. While the promoters of many of the segments were poorly expressed, promoters derived from segments 4 and 7 were shown to direct high levels of expression in various plant tissues and organs. The segment 1 promoter directs predominantly callus-specific expression and, when used to control a selectable marker gene, facilitated the transformation of all three species (tobacco, potato and cotton). From the results, a suite of plant expression vectors (pPLEX) derived from the SCSV genome were constructed and used here to produce herbicide- and insect-resistant cotton, demonstrating their utility in the expression of foreign genes in dicot crop species and their potential for use in agricultural biotechnology.
Resumo:
Two transgenic callus lines of rice, stably expressing a β-glucuronidase (GUS) gene, were supertransformed with a set of constructs designed to silence the resident GUS gene. An inverted-repeat (i/r) GUS construct, designed to produce mRNA with self-complementarity, was much more effective than simple sense and antisense constructs at inducing silencing. Supertransforming rice calluses with a direct-repeat (d/r) construct, although not as effective as those with the i/r construct, was also substantially more effective in silencing the resident GUS gene than the simple sense and antisense constructs. DNA hybridisation analyses revealed that every callus line supertransformed with either simple sense or antisense constructs, and subsequently showing GUS silencing, had the silence-inducing transgenes integrated into the plant genome in inverted-repeat configurations. The silenced lines containing i/r and d/r constructs did not necessarily have inverted-repeat T-DNA insertions. There was significant methylation of the GUS sequences in most of the silenced lines but not in the unsilenced lines. However, demethylation treatment of silenced lines with 5-azacytidine did not reverse the post-transcriptional gene silencing (PTGS) of GUS. Whereas the levels of RNA specific to the resident GUS gene were uniformly low in the silenced lines, RNA specific to the inducer transgenes accumulated to a substantial level, and the majority of the i/r RNA was unpolyadenylated. Altogether, these results suggest that both sense- and antisense-mediated gene suppression share a similar molecular basis, that unpolyadenylated RNA plays an important role in PTGS, and that methylation is not essential for PTGS.
Resumo:
In binary vectors, the antibiotic resistance gene used for selection of transformed plant cells is also usually expressed in the transforming Agrobacterium cells. This expression gives the bacterium antibiotic resistance, an unnecessary advantage on selective medium containing the antibiotic. Insertion of a castor bean catalase-1 (CAT-1) gene intron or a Parasponia andersonii haemoglobin gene intron into the coding region of the selectable marker gene, hph, completely abolished the expression of the gene in Agrobacterium, rendering it susceptible to hygromycin B. Use of these modified binary vectors minimized the overgrowth of Agrobacterium during plant transformation. Both of the introns were correctly spliced in plant cells and significantly enhanced hph gene expression in transformed rice tissue. The presence of these introns in the hph coding sequence not only maintained the selection efficiency of the hph gene, but with the CAT-1 intron also substantially increased the frequency of rice transformation. Transgenic lines with an intron-hph gene generally contained fewer gene copies and produced substantially more mRNA of the predicted size. Our results also indicate that transgenic plants with many copies of the transgene were more likely to show gene silencing than plants with 1-3 copies.