133 resultados para Diesel Fuel.
Resumo:
The objective of this study was to examine the hydrothermal liquefaction of sugarcane bagasse using ethanol and black liquor (BL) in a pilot scale. Combinations of co-solvents (ethanol/ water, ethanol/BL) were studied at various concentrations and reaction conditions. The maximum oil yield of 61% was achieved with a reaction temperature of 300 °C for 30 min and using pure BL as a solvent, while the highest higher heating value (HHV) was obtained from a 50:50 ethanol-BL mixture. The oils contained alcohols, esters, phenolic compounds, aromatics, and heterocyclics. The O/C and H/C ratios of the oil were comparable with traditional biodiesel and commercial diesel. Although this study showed there are some improvements to be made to improve the chemical composition, the approach has potential for large-scale production of a substitute for fossil-fuel-based diesel.
Resumo:
Considerable work has been undertaken to determine an economical process to provide sugarcane trash as a fuel for cogeneration. This paper reviews efforts to provide that trash fuel by harvesting, transporting and processing the trash with the cane. Harvesting trash with the cane has the advantage that cane that would otherwise be lost by extracting it with the trash is captured and sugar can be produced from that cane. Transporting trash with the cane significantly reduces the bulk density of the cane, requiring substantial changes and costs to cane transport. Shredding the trash at the harvester and compacting the cane in the bin prior to transport are possible methods to increase the bulk density but both have considerable cost. Processing trash through the sugar factory with the cane significantly reduces sugar recovery and sugar quality. Although considerable knowledge has been gained of these effects and further analysis has provided insights into their causes, much more work is required before whole crop harvesting and transport is an economically viable means of trash recovery.
Resumo:
Biodiesels produced from different feedstocks usually have wide variations in their fatty acid methyl ester (FAME) so that their physical properties and chemical composition are also different. The aim of this study is to investigate the effect of the physical properties and chemical composition of biodiesels on engine exhaust particle emissions. Alongside with neat diesel, four biodiesels with variations in carbon chain length and degree of unsaturation have been used at three blending ratios (B100, B50, B20) in a common rail engine. It is found that particle emission increased with the increase of carbon chain length. However, for similar carbon chain length, particle emissions from biodiesel having relatively high average unsaturation are found to be slightly less than that of low average unsaturation. Particle size is also found to be dependent on fuel type. The fuel or fuel mix responsible for higher particle mass (PM) and particle number (PN) emissions is also found responsible for larger particle median size. Particle emissions reduced consistently with fuel oxygen content regardless of the proportion of biodiesel in the blends, whereas it increased with fuel viscosity and surface tension only for higher diesel–biodiesel blend percentages (B100, B50). However, since fuel oxygen content increases with the decreasing carbon chain length, it is not clear which of these factors drives the lower particle emission. Overall, it is evident from the results presented here that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions.
Resumo:
Background Exposure to air pollutants, including diesel particulate matter, has been linked to adverse respiratory health effects. Inhaled diesel particulate matter contains adsorbed organic compounds. It is not clear whether the adsorbed organics or the residual components are more deleterious to airway cells. Using a physiologically relevant model, we investigated the role of diesel organic content on mediating cellular responses of primary human bronchial epithelial cells (HBECs) cultured at an air-liquid interface (ALI). Methods Primary HBECs were cultured and differentiated at ALI for at least 28 days. To determine which component is most harmful, we compared primary HBEC responses elicited by residual (with organics removed) diesel emissions (DE) to those elicited by neat (unmodified) DE for 30 and 60 minutes at ALI, with cigarette smoke condensate (CSC) as the positive control, and filtered air as negative control. Cell viability (WST-1 cell proliferation assay), inflammation (TNF-α, IL-6 and IL-8 ELISA) and changes in gene expression (qRT-PCR for HO-1, CYP1A1, TNF-α and IL-8 mRNA) were measured. Results Immunofluorescence and cytological staining confirmed the mucociliary phenotype of primary HBECs differentiated at ALI. Neat DE caused a comparable reduction in cell viability at 30 or 60 min exposures, whereas residual DE caused a greater reduction at 60 min. When corrected for cell viability, cytokine protein secretion for TNF-α, IL-6 and IL-8 were maximal with residual DE at 60 min. mRNA expression for HO-1, CYP1A1, TNF-α and IL-8 was not significantly different between exposures. Conclusion This study provides new insights into epithelial cell responses to diesel emissions using a physiologically relevant aerosol exposure model. Both the organic content and residual components of diesel emissions play an important role in determining bronchial epithelial cell response in vitro. Future studies should be directed at testing potentially useful interventions against the adverse health effects of air pollution exposure.
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behaviour change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, this research seeks to use human factors related theories and practices to inform the design and evaluation of an in-vehicle Human Machine Interface (HMI) providing real-time driver feedback with the aim of improving both fuel efficiency and safety.
Resumo:
This report describes a methodology for the design and coupling of a proton exchange membrane (PEM) Fuel Cell to an Unmanned Aerial Vehicle (UAV). The report summarizes existing work in the field, the type of UAV and the mission requirements, design the fuel cell system, simulation environment, and compares endurance and range to when the aircraft is fitted with a conventional internal combustion engine (ICE).
Resumo:
In her biography, Everybody Matters: My Life Giving Voice, Mary Robinson explained how she became interested in the topic of human rights and climate change, after hearing testimony from African farmers, with Archbishop Desmond Tutu.
Resumo:
Although BaZr 0.8Y 0.2O 3-δ(BZY) possesses large bulk proton conductivity and excellent chemical stability, its poor sinterability and grain boundaries block proton conduction. In this work, the effect of Ca as a co-dopant and as a sintering aid (as CaO), on the sinterability, proton conductivity, and fuel cell performance of BZY was investigated. The addition of 4 mol% CaO significantly improved the BZY sinterability: BZY pellets with densities of 92.7% and 97.5% with respect to the theoretical density were obtained after sintering at 1500°C and 1600°C, respectively. The improved BZY sinterability by CaO addition resulted also in a large proton conductivity; at 600°C, the total conductivity of BZY-CaO was 2.14 × 10 -3 S/cm, in wet Ar. Anode-supported fuel cells with 25 μm-thick BZY-CaO electrolyte membranes were fabricated by a dual-layer co-firing technique. The peak power density of the fuel cell with a BZY-Ni/BZY-4CaO/BZY-LSCF (La 0.6Sr 0.4Fe 0.8Co 0.2O 3-δ) configuration was 141 mW/cm 2 at 700°C, several times larger than the reported values of BZY electrolyte membrane fuel cells sintered with the addition of CuO or ZnO, demonstrating promising features for practical fuel cell applications.
Resumo:
A novel sintering additive based on LiNO3 was used to overcome the drawbacks of poor sinterability and low grain boundary conductivity in BaZr0.8Y0.2O3-δ (BZY20) protonic conductors. The Li-additive totally evaporated during the sintering process at 1600°C for 6 h, which led to highly dense BZY20 pellets (96.5% of the theoretical value). The proton conductivity values of BZY20 with Li sintering-aid were significantly larger than the values reported for BZY sintered with other metal oxides, due to the fast proton transport in the "clean" grain boundaries and grain interior. The total conductivity of BZY20-Li in wet Ar was 4.45 × 10-3 S cm-1 at 600°C. Based on the improved sinterability, anode-supported fuel cells with 25 μm-thick BZY20-Li electrolyte membranes were fabricated by a co-firing technique. The peak power density obtained at 700°C for a BZY-Ni/BZY20-Li/La0.6Sr0.4Co0.2Fe 0.8O3-δ (LSCF)-BZY cell was 53 mW cm-2, which is significantly larger than the values reported for fuel cells using electrolytes made of BZY sintered with the addition of ZnO and CuO, confirming the advantage of using Li as a sintering aid.
Resumo:
A stable Y-doped BaZrO3 electrolyte film, which showed a good performance in proton-conducting SOFCs, was successfully fabricated using a novel ionic diffusion strategy.
Resumo:
The difficult sintering of BaZr0.8Y0.2O 3-δ (BZY20) powders makes the fabrication of anode-supported BZY20 electrolyte films complex. Dense BZY20 membranes were successfully fabricated on anode substrates made of sinteractive NiO-BZY20 powders, prepared by a combustion method. With respect to traditional anode substrates made of powders prepared by mechanical mixing, the anode substrates made of the wet-chemically synthesized composite NiO-BZY20 powders significantly promoted the densification of BZY20 membranes: dense BZY20 films were obtained after co-pressing and co-firing at 1300 °C, a much lower temperature than those usually needed for densifying BZY20 membranes. Improved electrochemical performance was also observed: the supported BZY20 films maintained a high proton conductivity, up to 5.4 × 10-3 S cm-1 at 700 °C. Moreover, an anode-supported fuel cell with a 30 m thick BZY20 electrolyte film fabricated at 1400 °C on the anode made of the wet-chemically synthesized NiO-BZY20 powder showed a peak power density of 172 mW cm-2 at 700 °C, using La0.6Sr0.4Co 0.2Fe0.8O3-δ-BaZr0.7Y 0.2Pr0.1O3-δ as the cathode material, with a remarkable performance for proton-conducting solid oxide fuel cell (SOFC) applications.
Resumo:
In3+ was used as dopant for BaZrO3 proton conductor and 30 at%-doped BaZrO3 samples (BaZr0.7In 0.3O3-δ, BZI) were prepared as electrolyte materials for proton-conducting solid oxide fuel cells (SOFCs). The BZI material showed a much improved sinteractivity compared with the conventional Y-doped BaZrO 3. The BZI pellets reached almost full density after sintering at 1600 °C for 10 h, whereas the Y-doped BaZrO3 samples still remained porous under the same sintering conditions. The conductivity measurements indicated that BZI pellets showed smaller bulk but improved grain boundary proton conductivity, when compared with Y-doped BaZrO3 samples. A total proton conductivity of 1.7 × 10-3 S cm -1 was obtained for the BZI sample at 700 °C in wet 10% H 2 atmosphere. The BZI electrolyte material also showed adequate chemical stability against CO2 and H2O, which is promising for application in fuel cells.
Resumo:
The fossil fuel divestment movement has undergone explosive growth over the last few years - expanding from encouraging educational institutions to adopt ethical investment policies to focusing upon cities, pension funds and philanthropic charities. The fossil fuel divestment movement has attained global ambitions - challenging sovereign wealth funds and national governments to engage in fossil fuel divestment, and pushing for fossil fuel divestment at international climate talks - such as the Paris Climate Summit in 2015. By exploring and analysing a key campaign to 'Divest Norway', this chapter considers the efforts to globalise and internationalise the fossil fuel divestment campaign. Part 1 explores the origins of the fossil fuel divestment movement, and the application of such strategies in a variety of contexts. Part 2 looks at the campaign to divest Norway's sovereign wealth fund of fossil fuel investments. There has been much discussion as to whether the bold decision of Norway to engage in coal divestment will encourage and inspire other sovereign wealth funds to engage in fossil fuel divestment. The conclusion considers the efforts to introduce fossil fuel divestment as a policy initiative for nation states as a policy option in international climate law.