240 resultados para Dextransucrase assays
Resumo:
Introduction Stretching of tissue stimulates angiogenesis but increased motion at a fracture site hinders revascularisation. In vitro studies have indicated that mechanical stimuli promote angiogenic responses in endothelial cells, but can either inhibit or enhance responses when applied directly to angiogenesis assays. We anticipated that cyclic tension applied during endothelial network assembly would increase vascular structure formation up to a certain threshold. Methods Fibroblast/HUVEC co-cultures were subjected to cyclic equibiaxial strain (1 Hz; 6 h/day; 7 days) using the FlexerCell FX-4000T system and limiting rings for simultaneous application of multiple strain magnitudes (0–13%). Cells were labelled using anti-PECAM-1, and image analysis provided measures of endothelial network length and numbers of junctions. Results Cyclic stretching had no significant effect on the total length of endothelial networks (P > 0.2) but resulted in a strain-dependent decrease in branching and localised alignments of endothelial structures, which were in turn aligned with the supporting fibroblastic construct. Conclusion The organisation of endothelial networks under cyclic strain is dominated by structural adaptation to the supporting construct. It may be that, in fracture healing, the formation and integrity of the granulation tissue and callus is ultimately critical in revascularisation and its failure under severe strain conditions.
Resumo:
AIMS: To investigate the evolutionary origins of Australian healthcare-associated (HCA) methicillin-resistant Staphylococcus aureus (MRSA) strains from a panel of historical isolates typed using current genotyping techniques. METHODS: Nineteen MRSA isolates from 1965 to 1981 were examined and antibiotic susceptibility profiles determined. Genetic characterisation included real-time (RT) polymerase chain reaction (PCR) assays to identify single nucleotide polymorhpism (SNP) clonal complexes (SNP CC) and sequence type (SNP ST), multi locus sequence typing (MLST) and staphylococcal chromosomal cassette mec typing. RESULTS: All SNP CC30 isolates belonged to a novel sequence type, ST2249. All SNP CC239 isolates were confirmed as ST239-MRSA-III, except for a new single locus variant of ST239, ST2275. A further new type, ST2276, was identified. CONCLUSIONS: The earliest MRSA examined from 1965 was confirmed as ST250-MRSA-I, consistent with archaic European types. Identification of ST1-MRSA-IV in 1981 is the earliest appearance of this clinically important lineage which manifested in Australia and the United States in the 1990s. A previously unknown multi-resistant clone, ST2249-MRSA-III, was identified from 1973. Gentamicin resistance first appeared in this novel strain from 1976 and not ST239 as previously suspected. Thus, ST2249 was present in the earliest phase of the HCA MRSA epidemic in eastern Australia and was perhaps related to the emergence of the globally epidemic strain ST239.
Resumo:
Integrin-linked kinase (ILK) and p38MAPK are protein kinases that transduce extracellular signals regulating cell migration and actin cytoskeletal organization. ILK-dependent regulation of p38MAPK is critical for mammalian kidney development and in smooth muscle cell migration, however, specific p38 isoforms has not been previously examined in ILK-regulated responses. Signaling by ILK and p38MAPK is often dysregulated in bladder cancer, and here we report a strong positive correlation between protein levels of ILK and p38β, which is the predominant isoform found in bladder cancer cells, as well as in patient-matched normal bladder and tumor samples. Knockdown by RNA interference of either p38β or ILK disrupts serum-induced, Rac1-dependent migration and actin cytoskeletal organization in bladder cancer cells. Surprisingly, ILK knockdown causes the selective reduction in p38β cellular protein level, without inhibiting p38β messenger RNA (mRNA) expression. The loss of p38β protein in ILK-depleted cells is partially rescued by the 26S proteasomal inhibitor MG132. Using co-precipitation and bimolecular fluorescent complementation assays, we find that ILK selectively forms cytoplasmic complexes with p38β. In situ proximity ligation assays further demonstrate that serum-stimulated assembly of endogenous ILK–p38β complexes is sensitive to QLT-0267, a small molecule ILK kinase inhibitor. Finally, inhibition of ILK reduces the amplitude and period of serum-induced activation of heat shock protein 27 (Hsp27), a target of p38β implicated in actin cytoskeletal reorganization. Our work identifies Hsp27 as a novel target of ILK–p38β signaling complexes, playing a key role in bladder cancer cell migration.
Resumo:
Debilitating infectious diseases caused by Chlamydia are major contributors to the decline of Australia's iconic native marsupial species, the koala (Phascolarctos cinereus). An understanding of koala chlamydial disease pathogenesis and the development of effective strategies to control infections continue to be hindered by an almost complete lack of species-specific immunological reagents. The cell-mediated immune response has been shown to play an influential role in the response to chlamydial infection in other hosts. The objective of this study, hence, was to provide preliminary data on the role of two key cytokines, pro-inflammatory tumour necrosis factor alpha (TNFα) and anti-inflammatory interleukin 10 (IL10), in the koala Chlamydia pecorum response. Utilising sequence homology between the cytokine sequences obtained from several recently sequenced marsupial genomes, this report describes the first mRNA sequences of any koala cytokine and the development of koala specific TNFα and IL10 real-time PCR assays to measure the expression of these genes from koala samples. In preliminary studies comparing wild koalas with overt chlamydial disease, previous evidence of C. pecorum infection or no signs of C. pecorum infection, we revealed strong but variable expression of TNFα and IL10 in wild koalas with current signs of chlamydiosis. The description of these assays and the preliminary data on the cell-mediated immune response of koalas to chlamydial infection paves the way for future studies characterising the koala immune response to a range of its pathogens while providing reagents to assist with measuring the efficacy of ongoing attempts to develop a koala chlamydial vaccine.
Resumo:
Prostate cancer is the most commonly diagnosed malignancy and the second leading cause of cancer related deaths in Australian men. Treatment in the early stages of the disease involves surgery, radiation and/or hormone therapy. However, in late stages of the disease these treatments are no longer effective and only palliative care is available. Therefore, there is a focus on exploration of novel therapies to increase survival and treatment efficacy. Advanced prostate cancer is characterised by bone or other distant metastasis. Spreading of the primary tumour to a secondary location is a complex process requiring an initial loss in cell-cell adhesion followed by increased cell migration and invasion. One gene family that has been known to affect cell-to-cell contact in other model systems are the Eph receptor tyrosine kinases. They are the largest family of receptor tyrosine kinases made up of 14 vertebrate Eph receptors that bind to nine cell membrane bound ephrin ligands. Eph-ephrin interaction is crucial in regulating cell behaviour in developmental processes and it is now thought that the underlying mechanisms involved in development may also be involved in cancer. Aberrant expression has been reported in many human malignancies including prostate cancer. Furthermore, expression has been linked with metastasis and poor prognosis in other tumour models. This study explores the potential role of the Eph receptor family in prostate cancer, in particular the roles of EphA2, EphA3 and ephrin-A5. Gene expression profiles were established for the Eph family in a series of prostate cancer cell lines using quantitative real time RT-PCR. A smaller subset of the most prominently expressed genes was chosen to screen a cohort of clinical samples. Elevated levels of EphA2, EphA3 and their ligands, ephrin-A1 and ephrin-A5 were observed in individual cell lines. Interestingly high EphA3 expression was observed in the androgen responsive cell lines while EphA2 was more prominent in the androgen independent cell lines. However, studies using 5-dihydrotestosterone suggest that EphA3 expression in not regulated by androgen. Cells expressing EphA2 showed a greater ability for migration and invasion while cells expressing EphA3 showed poor migration and invasion. Forced expression of EphA2 in the LNCaP cell line resulted in a more invasive phenotype while forced expression of EphA3 in the PC-3 cell line suggests a possible negative effect for EphA3 on cell migration and invasion. Cell signalling studies show activation of EphA2 decreases activity of proteins thought to be involved in pathways regulating cell movement including Akt, Src and FAK. Changes to the activation status of Rho family members, including RhoA and Rac1, associated with reorganisation of the actin cytoskeleton, an important part of cell migration was also observed. As a result, activation of EphA2 in PC-3 cells resulted in a less invasive phenotype. A novel finding in this study was the discovery of a combination of two EphA2 Mabs able to activate EphA2. Preliminary results show a potential for this antibody combination to reduce prostate cancer invasion in vitro. A unique aspect of Eph-ephrin interaction is the resulting bi-directional signalling that occurs through both the receptor and ligand. In this study a potential role for ephrin-A5 mediated signalling in prostate cancer was observed. LNCaP cells express high levels of EphA3 and its high affinity ligand ephrin-A5. In stripe assays, used to study guidance cues, LNCaP cells show strong attraction/migration to EphA3-Fc stripes but not ephrin-A5-Fc stripes suggesting ephrin-A5 mediated reverse cell signalling is involved. Knockdown of ephrin-A5 using shRNA resulted in a decrease in attraction/migration to EphA3-Fc stripes. Furthermore a reduction in proliferation was also observed in vitro. A subcutaneous xenograft model using ephrin-A5 shRNA cells versus controls showed a decrease in tumour formation. This study demonstrates a difference in EphA2 and EphA3 function in prostate cancer migration/invasion and a potential role for ephrin-A5 in prostate cancer cell adhesion and growth.
Resumo:
SIC and DRS are related proteins present in only four of the more than 200 Streptococcus pyogenes emm-types. These proteins inhibit complement mediated lysis and/or the activity of certain antimicrobial peptides. A gene encoding a homologue of these proteins, herein called DrsG, has been identified in the related bacterium Streptococcus dysgalactiae subsp equisimilis (SDSE). Here we show that geographically dispersed isolates representing 14 of 50 emm-types examined possess variants of drsG. However not all isolates within the drsG-positive emm-types possess the gene. Sequence comparisons also reveal a high degree of conservation in different SDSE emm-types. To examine the biological activity of DrsG, recombinant versions of two major DrsG variants, DrsGS and DrsGL, were expressed and purified. Western blot analysis using antisera raised to these proteins demonstrated both variants to be expressed and secreted into culture supernatant. Unlike SIC, but similar to DRS, DrsG does not inhibit complement mediated lysis. However, like both SIC and DRS, DrsG is a ligand of the cathelcidin LL-37 and is inhibitory to its bactericidal activity in in vitro assays. The greatest similarity between DrsG and DRS/SIC is found in the signal sequence at the amino terminus and proline rich domains in the C-terminal half of the protein. Conservation of prolines in this latter region also suggests these residues are important in the biology of this family of proteins. This is the first report demonstrating the activity of an AMP inhibitory protein in SDSE. These results also suggest that inhibition of AMP activity is the primary function of this family of proteins. The acquisition of complement inhibitory activity of SIC may reflect its continuing evolution.
Resumo:
Large scale screening of libraries consisting of natural and small molecules led to the identification of many small molecule inhibitors repressing Wnt/β-Catenin signaling. However, targeted synthesis of novel Wnt pathway inhibitors has been rarely described. We developed a modular and expedient way to create the aromatic ring system with an aliphatic ring in between. Our synthesis opens up the possibility, in principle, to substitute all positions at the ring system with any desired substituent. Here, we tested five different haloquinone analogs carrying methoxy- and hydroxy-groups at different positions. Bona fide Wnt activity assays in cell culture and in Xenopus embryos revealed that two of these compounds act as potent inhibitors of aberrant activated Wnt/β-Catenin signaling.
Resumo:
Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Resumo:
Moving cell fronts are an essential feature of wound healing, development and disease. The rate at which a cell front moves is driven, in part, by the cell motility, quantified in terms of the cell diffusivity $D$, and the cell proliferation rate �$\lambda$. Scratch assays are a commonly-reported procedure used to investigate the motion of cell fronts where an initial cell monolayer is scratched and the motion of the front is monitored over a short period of time, often less than 24 hours. The simplest way of quantifying a scratch assay is to monitor the progression of the leading edge. Leading edge data is very convenient since, unlike other methods, it is nondestructive and does not require labeling, tracking or counting individual cells amongst the population. In this work we study short time leading edge data in a scratch assay using a discrete mathematical model and automated image analysis with the aim of investigating whether such data allows us to reliably identify $D$ and $\lambda$�. Using a naıve calibration approach where we simply scan the relevant region of the ($D$;$\lambda$�) parameter space, we show that there are many choices of $D$ and $\lambda$� for which our model produces indistinguishable short time leading edge data. Therefore, without due care, it is impossible to estimate $D$ and $\lambda$� from this kind of data. To address this, we present a modified approach accounting for the fact that cell motility occurs over a much shorter time scale than proliferation. Using this information we divide the duration of the experiment into two periods, and we estimate $D$ using data from the first period, while we estimate �$\lambda$ using data from the second period. We confirm the accuracy of our approach using in silico data and a new set of in vitro data, which shows that our method recovers estimates of $D$ and $\lamdba$� that are consistent with previously-reported values except that that our approach is fast, inexpensive, nondestructive and avoids the need for cell labeling and cell counting.
Resumo:
Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Resumo:
Background Flavonoids such as anthocyanins, flavonols and proanthocyanidins, play a central role in fruit colour, flavour and health attributes. In peach and nectarine (Prunus persica) these compounds vary during fruit growth and ripening. Flavonoids are produced by a well studied pathway which is transcriptionally regulated by members of the MYB and bHLH transcription factor families. We have isolated nectarine flavonoid regulating genes and examined their expression patterns, which suggests a critical role in the regulation of flavonoid biosynthesis. Results In nectarine, expression of the genes encoding enzymes of the flavonoid pathway correlated with the concentration of proanthocyanidins, which strongly increases at mid-development. In contrast, the only gene which showed a similar pattern to anthocyanin concentration was UDP-glucose-flavonoid-3-O-glucosyltransferase (UFGT), which was high at the beginning and end of fruit growth, remaining low during the other developmental stages. Expression of flavonol synthase (FLS1) correlated with flavonol levels, both temporally and in a tissue specific manner. The pattern of UFGT gene expression may be explained by the involvement of different transcription factors, which up-regulate flavonoid biosynthesis (MYB10, MYB123, and bHLH3), or repress (MYB111 and MYB16) the transcription of the biosynthetic genes. The expression of a potential proanthocyanidin-regulating transcription factor, MYBPA1, corresponded with proanthocyanidin levels. Functional assays of these transcription factors were used to test the specificity for flavonoid regulation. Conclusions MYB10 positively regulates the promoters of UFGT and dihydroflavonol 4-reductase (DFR) but not leucoanthocyanidin reductase (LAR). In contrast, MYBPA1 trans-activates the promoters of DFR and LAR, but not UFGT. This suggests exclusive roles of anthocyanin regulation by MYB10 and proanthocyanidin regulation by MYBPA1. Further, these transcription factors appeared to be responsive to both developmental and environmental stimuli.
Resumo:
Background Red colour in kiwifruit results from the presence of anthocyanin pigments. Their expression, however, is complex, and varies among genotypes, species, tissues and environments. An understanding of the biosynthesis, physiology and genetics of the anthocyanins involved, and the control of their expression in different tissues, is required. A complex, the MBW complex, consisting of R2R3-MYB and bHLH transcription factors together with a WD-repeat protein, activates anthocyanin 3-O-galactosyltransferase (F3GT1) to produce anthocyanins. We examined the expression and genetic control of anthocyanins in flowers of Actinidia hybrid families segregating for red and white petal colour. Results Four inter-related backcross families between Actinidia chinensis Planch. var. chinensis and Actinidia eriantha Benth. were identified that segregated 1:1 for red or white petal colour. Flower pigments consisted of five known anthocyanins (two delphinidin-based and three cyanidin-based) and three unknowns. Intensity and hue differed in red petals from pale pink to deep magenta, and while intensity of colour increased with total concentration of anthocyanin, no association was found between any particular anthocyanin data and hue. Real time qPCR demonstrated that an R2R3 MYB, MYB110a, was expressed at significant levels in red-petalled progeny, but not in individuals with white petals. A microsatellite marker was developed that identified alleles that segregated with red petal colour, but not with ovary, stamen filament, or fruit flesh colour in these families. The marker mapped to chromosome 10 in Actinidia. The white petal phenotype was complemented by syringing Agrobacterium tumefaciens carrying Actinidia 35S::MYB110a into the petal tissue. Red pigments developed in white petals both with, and without, co-transformation with Actinidia bHLH partners. MYB110a was shown to directly activate Actinidia F3GT1 in transient assays. Conclusions The transcription factor, MYB110a, regulates anthocyanin production in petals in this hybrid population, but not in other flower tissues or mature fruit. The identification of delphinidin-based anthocyanins in these flowers provides candidates for colour enhancement in novel fruits.
Resumo:
Phloridzin is the predominant polyphenol in apple (Malus× domestica Borkh.) where it accumulates to high concentrations in many tissues including the leaves, bark, roots and fruit. Despite its relative abundance in apple the biosynthesis of phloridzin and other related dihydrochalcones remains only partially understood. The key unidentified enzyme in phloridzin biosynthesis is a putative carbon double bond reductase which is thought to act on p-coumaroyl-CoA to produce the dihydro p-coumaroyl-CoA precursor. A functional screen of six apple enoyl reductase-like (ENRL) genes was carried out using transient infiltration into tobacco and gene silencing by RNA interference (RNAi) in order to determine carbon double bond reductase activity and contribution to foliar phloridzin concentrations. The ENRL-3 gene caused a significant increase in phloridzin concentration when infiltrated into tobacco leaves whilst a second protein ENRL-5, with over 98% amino acid sequence similarity to ENRL-3, showed p-coumaroyl-CoA reductase activity in enzyme assays. Finally, an RNAi study showed that reducing the transcript levels of ENRL-3 in transgenic 'Royal Gala' led to a 66% decrease in the concentration of dihydrochalcones in the leaves in the one available silenced line. Overall these results suggest that ENRL-3, and its close homolog ENRL-5, may contribute to the biosynthesis of phloridzin in apple.
Resumo:
Much of the diversity of anthocyanins is due to the action of glycosyltransferases, which add sugar moieties to anthocyanidins. We identified two glycosyltransferases, F3GT1 and F3GGT1, from red-fleshed kiwifruit (Actinidia chinensis) that perform sequential glycosylation steps. Red-fleshed genotypes of kiwifruit accumulate anthocyanins mainly in the form of cyanidin 3-O-xylo-galactoside. Genes in the anthocyanin and flavonoid biosynthetic pathway were identified and shown to be expressed in fruit tissue. However, only the expression of the glycosyltransferase F3GT1 was correlated with anthocyanin accumulation in red tissues. Recombinant enzyme assays in vitro and in vivo RNA interference (RNAi) demonstrated the role of F3GT1 in the production of cyanidin 3-O-galactoside. F3GGT1 was shown to further glycosylate the sugar moiety of the anthocyanins. This second glycosylation can affect the solubility and stability of the pigments and modify their colour. We show that recombinant F3GGT1 can catalyse the addition of UDP-xylose to cyanidin 3-galactoside. While F3GGT1 is responsible for the end-product of the pathway, F3GT1 is likely to be the key enzyme regulating the accumulation of anthocyanin in red-fleshed kiwifruit varieties.
Resumo:
Anthocyanin concentration is an important determinant of the colour of many fruits. In apple (Malus x domestica), centuries of breeding have produced numerous varieties in which levels of anthocyanin pigment vary widely and change in response to environmental and developmental stimuli. The apple fruit cortex is usually colourless, although germplasm does exist where the cortex is highly pigmented due to the accumulation of either anthocyanins or carotenoids. From studies in a diverse array of plant species, it is apparent that anthocyanin biosynthesis is controlled at the level of transcription. Here we report the transcript levels of the anthocyanin biosynthetic genes in a red-fleshed apple compared with a white-fleshed cultivar. We also describe an apple MYB transcription factor, MdMYB10, that is similar in sequence to known anthocyanin regulators in other species. We further show that this transcription factor can induce anthocyanin accumulation in both heterologous and homologous systems, generating pigmented patches in transient assays in tobacco leaves and highly pigmented apple plants following stable transformation with constitutively expressed MdMYB10. Efficient induction of anthocyanin biosynthesis in transient assays by MdMYB10 was dependent on the co-expression of two distinct bHLH proteins from apple, MdbHLH3 and MdbHLH33. The strong correlation between the expression of MdMYB10 and apple anthocyanin levels during fruit development suggests that this transcription factor is responsible for controlling anthocyanin biosynthesis in apple fruit; in the red-fleshed cultivar and in the skin of other varieties, there is an induction of MdMYB10 expression concurrent with colour formation during development. Characterization of MdMYB10 has implications for the development of new varieties through classical breeding or a biotechnological approach.