237 resultados para Chicken infectious anemia virus
Resumo:
Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown.
Resumo:
Background: HIV-1 Pr55gag virus-like particles (VLPs) expressed by baculovirus in insect cells are considered to be a very promising HIV-1 vaccine candidate, as they have been shown to elicit broad cellular immune responses when tested in animals, particularly when used as a boost to DNA or BCG vaccines. However, it is important for the VLPs to retain their structure for them to be fully functional and effective. The medium in which the VLPs are formulated and the temperature at which they are stored are two important factors affecting their stability. FINDINGS We describe the screening of 3 different readily available formulation media (sorbitol, sucrose and trehalose) for their ability to stabilise HIV-1 Pr55gag VLPs during prolonged storage. Transmission electron microscopy (TEM) was done on VLPs stored at two different concentrations of the media at three different temperatures (4[degree sign]C, --20[degree sign]C and -70[degree sign]C) over different time periods, and the appearance of the VLPs was compared. VLPs stored in 15% trehalose at -70[degree sign]C retained their original appearance the most effectively over a period of 12 months. VLPs stored in 5% trehalose, sorbitol or sucrose were not all intact even after 1 month storage at the temperatures tested. In addition, we showed that VLPs stored under these conditions were able to be frozen and re-thawed twice before showing changes in their appearance. Conclusions Although the inclusion of other analytical tools are essential to validate these preliminary findings, storage in 15% trehalose at -70[degree sign]C for 12 months is most effective in retaining VLP stability.
Resumo:
Background During a global influenza pandemic, the vaccine requirements of developing countries can surpass their supply capabilities, if these exist at all, compelling them to rely on developed countries for stocks that may not be available in time. There is thus a need for developing countries in general to produce their own pandemic and possibly seasonal influenza vaccines. Here we describe the development of a plant-based platform for producing influenza vaccines locally, in South Africa. Plant-produced influenza vaccine candidates are quicker to develop and potentially cheaper than egg-produced influenza vaccines, and their production can be rapidly upscaled. In this study, we investigated the feasibility of producing a vaccine to the highly pathogenic avian influenza A subtype H5N1 virus, the most generally virulent influenza virus identified to date. Two variants of the haemagglutinin (HA) surface glycoprotein gene were synthesised for optimum expression in plants: these were the full-length HA gene (H5) and a truncated form lacking the transmembrane domain (H5tr). The genes were cloned into a panel of Agrobacterium tumefaciens binary plant expression vectors in order to test HA accumulation in different cell compartments. The constructs were transiently expressed in tobacco by means of agroinfiltration. Stable transgenic tobacco plants were also generated to provide seed for stable storage of the material as a pre-pandemic strategy. Results For both transient and transgenic expression systems the highest accumulation of full-length H5 protein occurred in the apoplastic spaces, while the highest accumulation of H5tr was in the endoplasmic reticulum. The H5 proteins were produced at relatively high concentrations in both systems. Following partial purification, haemagglutination and haemagglutination inhibition tests indicated that the conformation of the plant-produced HA variants was correct and the proteins were functional. The immunisation of chickens and mice with the candidate vaccines elicited HA-specific antibody responses. Conclusions We managed, after synthesis of two versions of a single gene, to produce by transient and transgenic expression in plants, two variants of a highly pathogenic avian influenza virus HA protein which could have vaccine potential. This is a proof of principle of the potential of plant-produced influenza vaccines as a feasible pandemic response strategy for South Africa and other developing countries.
Resumo:
Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen. © 2008 SGM.
Resumo:
Maize streak virus (MSV) contributes significantly to the problem of extremely low African maize yields. Whilst a diverse range of MSV and MSV-like viruses are endemic in sub-Saharan Africa and neighbouring islands, only a single group of maize-adapted variants - MSV subtypes A1 -A6 - causes severe enough disease in maize to influence yields substantially. In order to assist in designing effective strategies to control MSV in maize, a large survey covering 155 locations was conducted to assess the diversity, distribution and genetic characteristics of the Ugandan MSV-A population. PCR-restriction fragment-length polymorphism analyses of 391 virus isolates identified 49 genetic variants. Sixty-two full-genome sequences were determined, 52 of which were detectably recombinant. All but two recombinants contained predominantly MSV-A1-like sequences. Of the ten distinct recombination events observed, seven involved inter-MSV-A subtype recombination and three involved intra-MSV-A1 recombination. One of the intra-MSV-A1 recombinants, designated MSV-A1 UgIII, accounted for >60% of all MSV infections sampled throughout Uganda. Although recombination may be an important factor in the emergence of novel geminivirus variants, it is demonstrated that its characteristics in MSV are quite different from those observed in related African cassava-infecting geminivirus species. © 2007 SGM.
Resumo:
Experimental investigations into virus recombination can provide valuable insights into the biochemical mechanisms and the evolutionary value of this fundamental biological process. Here, we describe an experimental scheme for studying recombination that should be applicable to any recombinogenic viruses amenable to the production of synthetic infectious genomes. Our approach is based on differences in fitness that generally exist between synthetic chimaeric genomes and the wild-type viruses from which they are constructed. In mixed infections of defective reciprocal chimaeras, selection strongly favours recombinant progeny genomes that recover a portion of wild-type fitness. Characterizing these evolved progeny viruses can highlight both important genetic fitness determinants and the contribution that recombination makes to the evolution of their natural relatives. Moreover, these experiments supply precise information about the frequency and distribution of recombination breakpoints, which can shed light on the mechanistic processes underlying recombination. We demonstrate the value of this approach using the small single-stranded DNA geminivirus, maize streak virus (MSV). Our results show that adaptive recombination in this virus is extremely efficient and can yield complex progeny genomes comprising up to 18 recombination breakpoints. The patterns of recombination that we observe strongly imply that the mechanistic processes underlying rolling circle replication are the prime determinants of recombination breakpoint distributions found in MSV genomes sampled from nature. © 2009 SGM.
Resumo:
Background. Recent reports have indicated that single-stranded DNA (ssDNA) viruses in the taxonomic families Geminiviridae, Parvoviridae and Anellovirus may be evolving at rates of ∼10-4 substitutions per site per year (subs/site/year). These evolution rates are similar to those of RNA viruses and are surprisingly high given that ssDNA virus replication involves host DNA polymerases with fidelities approximately 10 000 times greater than those of error-prone viral RNA polymerases. Although high ssDNA virus evolution rates were first suggested in evolution experiments involving the geminivirus maize streak virus (MSV), the evolution rate of this virus has never been accurately measured. Also, questions regarding both the mechanistic basis and adaptive value of high geminivirus mutation rates remain unanswered. Results. We determined the short-term evolution rate of MSV using full genome analysis of virus populations initiated from cloned genomes. Three wild type viruses and three defective artificial chimaeric viruses were maintained in planta for up to five years and displayed evolution rates of between 7.4 × 10-4 and 7.9 × 10-4 subs/site/year. Conclusion. These MSV evolution rates are within the ranges observed for other ssDNA viruses and RNA viruses. Although no obvious evidence of positive selection was detected, the uneven distribution of mutations within the defective virus genomes suggests that some of the changes may have been adaptive. We also observed inter-strand nucleotide substitution imbalances that are consistent with a recent proposal that high mutation rates in geminiviruses (and possibly ssDNA viruses in general) may be due to mutagenic processes acting specifically on ssDNA molecules. © 2008 Walt et al; licensee BioMed Central Ltd.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) subtype C is the predominant HIV in southern Africa, and is the target of a number of recent vaccine candidates. It has been proposed that a heterologous prime/boost vaccination strategy may result in stronger, broader and more prolonged immune responses. Since HIV-1 Gag Pr55 polyprotein can assemble into virus-like particles (VLPs) which have been shown to induce a strong cellular immune response in animals, we showed that a typical southern African subtype C Pr55 protein expressed in insect cells via recombinant baculovirus could form VLPs. We then used the baculovirus-produced VLPs as a boost to a subtype C HIV-1 gag DNA prime vaccination in mice. This study shows that a low dose of HIV-1 subtype C Gag VLPs can significantly boost the immune response to a single subtype C gag DNA inoculation in mice. These results suggest a possible vaccination regimen for humans. © 2004 SGM.
Resumo:
Circoviruses lack an autonomous DNA polymerase and are dependent on the replication machinery of the host cell for de novo DNA synthesis. Accordingly, the viral DNA needs to cross both the plasma membrane and the nuclear envelope before replication can occur. Here we report on the subcellular distribution of the beak and feather disease virus (BFDV) capsid protein (CP) and replication-associated protein (Rep) expressed via recombinant baculoviruses in an insect cell system and test the hypothesis that the CP is responsible for transporting the viral genome, as well as Rep, across the nuclear envelope. The intracellular localization of the BFDV CP was found to be directed by three partially overlapping bipartite nuclear localization signals (NLSs) situated between residues 16 and 56 at the N terminus of the protein. Moreover, a DNA binding region was also mapped to the N terminus of the protein and falls within the region containing the three putative NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome. Interestingly, whereas Rep expressed on its own in insect cells is restricted to the cytoplasm, coexpression with CP alters the subcellular localization of Rep to the nucleus, strongly suggesting that an interaction with CP facilitates movement of Rep into the nucleus. Copyright © 2006, American Society for Microbiology. All Rights Reserved.
Resumo:
In this article, we report transgene-derived resistance in maize to the severe pathogen maize streak virus (MSV). The mutated MSV replication-associated protein gene that was used to transform maize showed stable expression to the fourth generation. Transgenic T 2 and T 3 plants displayed a significant delay in symptom development, a decrease in symptom severity and higher survival rates than non-transgenic plants after MSV challenge, as did a transgenic hybrid made by crossing T 2 Hi-II with the widely grown, commercial, highly MSV-susceptible, white maize genotype WM3. To the best of our knowledge, this is the first maize to be developed with transgenic MSV resistance and the first all-African-produced genetically modified crop plant. © 2007 The Authors.
Resumo:
Most mastreviruses (family Geminiviridae) infect monocotyledonous hosts and are transmitted by leafhopper vectors. Only two mastrevirus species, Tobacco yellow dwarf virus from Australia and Bean yellow dwarf virus (BeYDV) from South Africa, have been identified whose members infect dicotyledonous plants. We have identified two distinct mastreviruses in chickpea stunt disease (CSD)-affected chickpea originating from Pakistan. The first is an isolate of BeYDV, previously only known to occur in South Africa. The second is a member of a new species with the BeYDV isolates as its closest relatives. A PCR-based diagnostic test was developed to differentiate these two virus species. Our results show that BeYDV plays no role in the etiology of CSD in Pakistan, while the second virus occurs widely in chickpea across Pakistan. A genomic clone of the new virus was infectious to chickpea (Cicer arietinum L.) and induced symptoms typical of CSD. We propose the use of the name Chickpea chlorotic dwarf Pakistan virus for the new species. The significance of these findings with respect to our understanding of the evolution, origin and geographic spread of dicot-infecting mastreviruses is discussed. © 2008 Springer-Verlag.
Resumo:
HIV-1 Pr55 Gag virus-like particles (VLPs) are strong immunogens with potential as candidate HIV vaccines. VLP immunogenicity can be broadened by making chimaeric Gag molecules: however, VLPs incorporating polypeptides longer than 200 aa fused in frame with Gag have not yet been reported. We constructed a range of gag-derived genes encoding in-frame C-terminal fusions of myristoylation-competent native Pr55Gag and p6-truncated Gag (Pr50Gag) to test the effects of polypeptide length and sequence on VLP formation and morphology, in an insect cell expression system. Fused sequences included a modified reverse transcriptase-Tat-Nef fusion polypeptide (RTTN, 778 aa), and truncated versions of RTTN ranging from 113 aa to 450 aa. Baculovirus-expressed chimaeric proteins were examined by western blot and electron microscopy. All chimaeras formed VLPs which could be purified by sucrose gradient centrifugation. VLP diameter increased with protein MW, from ∼100 nm for Pr55Gag to ∼250 nm for GagRTTN. The presence or absence of the Gag p6 region did not obviously affect VLP formation or appearance. GagRT chimaeric particles were successfully used in mice to boost T-cell responses to Gag and RT that were elicited by a DNA vaccine encoding a GagRTTN polypeptide, indicating the potential of such chimaeras to be used as candidate HIV vaccines. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Maize streak virus (MSV), which causes maize streak disease (MSD), is one of the most serious biotic threats to African food security. Here, we use whole MSV genomes sampled over 30 years to estimate the dates of key evolutionary events in the 500 year association of MSV and maize. The substitution rates implied by our analyses agree closely with those estimated previously in controlled MSV evolution experiments, and we use them to infer the date when the maize-adapted strain, MSV-A, was generated by recombination between two grass-adapted MSV strains. Our results indicate that this recombination event occurred in the mid-1800s, ∼20 years before the first credible reports of MSD in South Africa and centuries after the introduction of maize to the continent in the early 1500s. This suggests a causal link between MSV recombination and the emergence of MSV-A as a serious pathogen of maize. © 2009 SGM.
Resumo:
Mycobacterium bovis BCG is considered an attractive live bacterial vaccine vector. In this study, we investigated the immune response of baboons to a primary vaccination with recombinant BCG (rBCG) constructs expressing the gag gene from a South African HIV-1 subtype C isolate, and a boost with HIV-1 subtype C Pr55 gag virus-like particles (Gag VLPs). Using an interferon enzyme-linked immunospot assay, we show that although these rBCG induced only a weak or an undetectable HIV-1 Gag-specific response on their own, they efficiently primed for a Gag VLP boost, which strengthened and broadened the immune responses. These responses were predominantly CD8+ T cell-mediated and recognised similar epitopes as those targeted by humans with early HIV-1 subtype C infection. In addition, a Gag-specific humoral response was elicited. These data support the development of HIV-1 vaccines based on rBCG and Pr55 gag VLPs. © 2009 Elsevier Ltd. All rights reserved.