180 resultados para Chemical affinity.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic transport in both intrinsic and acid-treated single-walled carbon nanotube networks containing more than 90% semiconducting nanotubes is investigated using temperature-dependent resistance measurements. The semiconducting behavior observed in the intrinsic network is attributed to the three-dimensional electron hopping mechanism. In contrast, the chemical doping mechanism in the acid-treated network is found to be responsible for the revealed metal-like linear resistivity dependence in a broad temperature range. This effective method to control the electrical conductivity of single-walled carbon nanotube networks is promising for future nanoscale electronics, thermometry, and bolometry. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotips with different structures were synthesized by plasma-enhanced hot filament chemical vapor deposition and plasma-enhanced chemical vapor deposition using different deposition conditions, and they were investigated by scanning electron microscopy and Raman spectroscopy. The results indicate that the photoluminescence background of the Raman spectra is different for different carbon nanotips. Additionally, the Raman spectra of the carbon nanotips synthesized using nitrogen-containing gas precursors show a peak located at about 2120 cm-1 besides the common D and G peaks. The observed difference in the photoluminescence background is related to the growth mechanisms, structural properties, and surface morphology of a-C:H and a-C:H:N nanotips, in particular, the sizes of the emissive tips.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge and chemical composition of ambient particles in an urban environment were determined using a Neutral Particle and Air Ion Spectrometer and an Aerodyne compact Time-Of-Flight Aerosol Mass Spectrometer. Particle formation and growth events were observed on 20 of the 36 days of sampling, with eight of these events classified as strong. During these events, peaks in the concentration of intermediate and large ions were followed by peaks in the concentration of ammonium and sulphate, which were not observed in the organic fraction. Comparison of days with and without particle formation events revealed that ammonium and sulphate were the dominant species on particle formation days while high concentrations of biomass burning OA inhibited particle growth. Analyses of the degree of particle neutralisation lead us to conclude that an excess of ammonium enabled particle formation and growth. In addition, the large ion concentration increased sharply during particle growth, suggesting that during nucleation the neutral gaseous species ammonia and sulphuric acid react to form ammonium and sulphate ions. Overall, we conclude that the mechanism of particle formation and growth involved ammonia and sulphuric acid, with limited input from organics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphitization, a common process involving the transformation of metastable nongraphitic carbon into graphite is one of the major present-day challenges for micro- and nanocarbons due to their unique structural character and highly unusual thermal activation. Here we report on the successful graphitization of nanocrystalline carbon microcoils prepared by catalytic chemical vapor deposition and post-treated in argon atmosphere at temperatures ∼2500 °C for 2 h. The morphology, microstructure, and thermal properties of the carbon microcoils are examined in detail. The graphitization mechanism is discussed by invoking a model of structural transformation of the carbon microcoils. The results reveal that after graphitization the carbon microcoils are prominently purified and feature a clear helical morphology, as well as a more regular and ordered microstructure. The interlayer spacing of the carbon microcoils decreases from 0.36 to 0.34 nm, whereas the mean crystal sizes in the c - and a -directions increase from 1.64 to 2.04 nm and from 3.86 to 7.21 nm, respectively. Thermal treatment also substantially improves the antioxidation properties of the microcoils by lifting the oxidation onset temperature from 550 to 672 °C. This process may be suitable for other nongraphitic micro- and nanomaterials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model to describe the plasma-assisted growth of carbon nanofibers (CNFs) is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters, such as the growth rate due to surface and bulk diffusion, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon atoms on the catalyst surface, and the surface coverages, have been studied. The dependence of these parameters on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface is quantified. The optimum conditions under which a low-temperature plasma environment can benefit the CNF growth are formulated. These results are in good agreement with the available experimental data on CNF growth and can be used for optimizing synthesis of related nanoassemblies in low-temperature plasma-assisted nanofabrication. © 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline silicon carbide (nc-SiC) films are prepared by low-frequency inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane diluted with hydrogen at a substrate temperature of 500 °C. The effect of different hydrogen dilution ratios X [hydrogen flow (sccm) / silane + methane flow (sccm)] on the growth of nc-SiC films is investigated by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). At a low hydrogen dilution ratio X, cubic silicon carbide is the main crystal phase; whereas at a high hydrogen dilution ratio X, hexagonal silicon carbide is the main crystal phase. The SiC crystal phase transformation may be explained by the different surface mobility of reactive Si-based and C-based radicals deposited at different hydrogen dilution ratios X. The FTIR and XPS analyses show that the Si-C bonds are the main bonds in the films and elemental composition of SiC is nearly stoichiometric with almost equal share of silicon and carbon atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of 1D simulation of nanoparticle dynamics in the areas adjacent to nanostructured carbon-based films exposed to chemically active complex plasma of CH4 + H2 + Ar gas mixtures are presented. The nanoparticle-loaded near-substrate (including sheath and presheath) areas of a low-frequency (0.5 MHz) inductively coupled plasma facility for the PECVD growth of the ordered carbon-based nanotip structures are considered. The conditions allowing one to predict the size of particles that can pass through the plasma sheath and softly land onto the surface are formulated. The possibility of soft nano-cluster deposition without any additional acceleration common for some existing nano-cluster deposition schemes is demonstrated. The effect of the substrate heating power and the average atomic mass of neutral species is studied numerically and verified experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the efficient deposition of hydrogenated diamond-like carbon (DLC) film in a plasma reactor that features both the capacitively and inductively coupled operation regimes. The hydrogenated DLC films have been prepared on silicon wafers using a low-frequency (500 kHz) inductively coupled plasma (ICP) chemical vapor deposition (CVD) system. At low RF powers, the system operates as an asymmetric capacitively coupled plasma source, and the film deposition process is undertaken in the electrostatic (E) discharge regime. Above the mode transition threshold, the high-density inductively coupled plasma is produced in the electromagnetic (H) discharge regime. It has been shown that the deposition rate and hardness of the DLC film are much higher in the H-mode deposition regime. For a 2.66-Pa H-mode CH4 + Ar gas mixture discharge, the deposited DLC film exhibits a mechanical hardness of 18 GPa, Young's modulus of 170 GPa, and compressive stress of 1.3 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene has received great interest from researchers all over the world owing to its unique properties. Much of the excitement surrounding graphene is due to its remarkable properties and inherent quantum effects. These effects and properties make it a desirable material for the fabrication of new devices. Graphene has a plethora of potential uses including gas and molecular sensors, electronics, spintronics and optics [1-7]. Interestingly, some of these properties have been known about since before the material was even isolated due to a considerable amount of theoretical work and simulations. The material was to some extent a condensed matter modelers "toy" as it was used as a benchmark 2D material Graphene had been used for a long time as the fundamental building block of many other carbon structures...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical model describing a plasma-assisted growth of carbon nanofibers (CNFs), which involves two competing channels of carbon incorporation into stacked graphene sheets: via surface diffusion and through the bulk of the catalyst particle (on the top of the nanofiber), accounting for a range of ion- and radical-assisted processes on the catalyst surface. Using this model, it is found that at low surface temperatures, Ts, the CNF growth is indeed controlled by surface diffusion, thus quantifying the semiempirical conclusions of earlier experiments. On the other hand, both the surface and bulk diffusion channels provide a comparable supply of carbon atoms to the stacked graphene sheets at elevated synthesis temperatures. It is also shown that at low Ts, insufficient for effective catalytic precursor decomposition, the plasma ions play a key role in the production of carbon atoms on the catalyst surface. The model is used to compute the growth rates for the two extreme cases of thermal and plasma-enhanced chemical vapor deposition of CNFs. More importantly, these results quantify and explain a number of observations and semiempirical conclusions of earlier experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corporate social responsibility is imperative for manufacturing companies to achieve sustainable development. Under a strong environmental information disclosure system, polluting companies are disadvantaged in terms of market competitiveness, because they lack an environmentally friendly image. The objective of this study is to analyze productive inefficiency change in relation to toxic chemical substance emissions for the United States and Japan and their corresponding policies. We apply the weighted Russell directional distance model to measure companies productive inefficiency, which represents their production technology. The data encompass 330 US manufacturing firms observed from 1999 to 2007, and 466 Japanese manufacturing firms observed from 2001 to 2008. The article focuses on nine high-pollution industries (rubber and plastics; chemicals and allied products; paper and pulp; steel and non-ferrous metal; fabricated metal; industrial machinery; electrical products; transportation equipment; precision instruments) categorized into two industry groups: basic materials industries and processing and assembly industries. The results show that productive inefficiency decreased in all industrial sectors in the United States and Japan from 2001 to 2007. In particular, that of the electrical products industry decreased rapidly after 2002 for both countries, possibly because of the enforcement of strict environmental regulations for electrical products exported to European markets.