378 resultados para CHARGE-STATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various time-memory tradeoffs attacks for stream ciphers have been proposed over the years. However, the claimed success of these attacks assumes the initialisation process of the stream cipher is one-to-one. Some stream cipher proposals do not have a one-to-one initialisation process. In this paper, we examine the impact of this on the success of time-memory-data tradeoff attacks. Under the circumstances, some attacks are more successful than previously claimed while others are less. The conditions for both cases are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Throughout Australia freehold land interests are protected by statutory schemes which grant indefeasibility of title to registered interests. Queensland freehold land interests are protected by Torrens system established by the Land Title Act 1994. However, no such protection exists for Crown land interests. The extent of Queensland occupied under some form of Crown tenure, in excess of 70%, means that Queensland Crown land users are disadvantaged when compared to freehold land users. This article examines the role indefeasibility of title has in protecting interests in Crown land. A comparative analysis is undertaken between Queensland and New South Wales land management frameworks to determine whether interests in crown land are adequately protected in Queensland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a road survey as part of a workshop conducted by the Texas Department of Transportation (TxDOT) to evaluate and improve the maintenance practices of the Texas highway system. Directors of maintenance from six peer states (California, Kansas, Georgia, Missouri, North Carolina, and Washington) were invited to this 3-day workshop. One of the important parts of this workshop was a Maintenance Test Section Survey (MTSS) to evaluate a number of pre-selected one-mile roadway sections. The workshop schedule allowed half a day to conduct the field survey and 34 sections were evaluated. Each of the evaluators was given a booklet and asked to rate the selected road sections. The goals of the MTSS were to: 1. Assess the threshold level at which maintenance activities are required as perceived by the evaluators from the peer states; 2. Assess the threshold level at which maintenance activities are required as perceived by evaluators from other TxDOT districts; and 3. Perform a pilot evaluation of the MTSS concept. This paper summarizes the information obtained from survey and discusses the major findings based on a statistical analysis of the data and comments from the survey participants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess and improve their practices, and thus ensure the future excellence of the Texas highway system, the Texas Department of Transportation (TxDOT) sought a forum in which experts from other State Departments of Transportation could evaluate the TxDOT maintenance program and practices based on their expertise. To meet this need, a Peer State Review of TxDOT Maintenance Practices project was organized and conducted by the Center for Transportation Research (CTR) at The University of Texas at Austin. CTR researchers, along with TxDOT staff, conducted a workshop to present TxDOT’s maintenance practices to the visiting peer reviewers and invite their feedback. Directors of maintenance from six different states—California, Kansas, Georgia, Missouri, North Carolina, and Washington—participated in the workshop. CTR and TxDOT worked together to design a questionnaire with 15 key questions to capture the peers’ opinions on maintenance program and practices. This paper compiles and summarizes this information. The examination results suggested that TxDOT should use a more state-wide approach to funding and planning, in addition to funding and planning for each district separately. Additionally, the peers recommended that criteria such as condition and level of service of the roadways be given greater weight in the funding allocation than lane miles or vehicle miles traveled (VMT). The Peer Reviewers also determined that TxDOT maintenance employee experience and communications were strong assets. Additional strengths included the willingness of TxDOT to invite peer reviews of their practices and a willingness to consider opportunities for improvement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple phenomenological model for the relationship between structure and composition of the high Tc cuprates is presented. The model is based on two simple crystal chemistry principles: unit cell doping and charge balance within unit cells. These principles are inspired by key experimental observations of how the materials accommodate large deviations from stoichiometry. Consistent explanations for significant HTSC properties can be explained without any additional assumptions while retaining valuable insight for geometric interpretation. Combining these two chemical principles with a review of Crystal Field Theory (CFT) or Ligand Field Theory (LFT), it becomes clear that the two oxidation states in the conduction planes (typically d8 and d9) belong to the most strongly divergent d-levels as a function of deformation from regular octahedral coordination. This observation offers a link to a range of coupling effects relating vibrations and spin waves through application of Hund’s rules. An indication of this model’s capacity to predict physical properties for HTSC is provided and will be elaborated in subsequent publications. Simple criteria for the relationship between structure and composition in HTSC systems may guide chemical syntheses within new material systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sfinks is a shift register based stream cipher designed for hardware implementation. The initialisation state update function is different from the state update function used for keystream generation. We demonstrate state convergence during the initialisation process, even though the individual components used in the initialisation are one-to-one. However, the combination of these components is not one-to-one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the current state in the application of infrared methods, particularly mid-infrared (mid-IR) and near infrared (NIR), for the evaluation of the structural and functional integrity of articular cartilage. It is noted that while a considerable amount of research has been conducted with respect to tissue characterization using mid-IR, it is almost certain that full-thickness cartilage assessment is not feasible with this method. On the contrary, the relatively more considerable penetration capacity of NIR suggests that it is a suitable candidate for full-thickness cartilage evaluation. Nevertheless, significant research is still required to improve the specificity and clinical applicability of the method if we are going to be able to use it for distinguishing between functional and dysfunctional cartilage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an innovative prognostics model based on health state probability estimation embedded in the closed loop diagnostic and prognostic system. To employ an appropriate classifier for health state probability estimation in the proposed prognostic model, the comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault levels of three faults in HP-LNG pump. Two sets of impeller-rubbing data were employed for the prediction of pump remnant life based on estimation of discrete health state probability using an outstanding capability of SVM and a feature selection technique. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models (SSM). PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries Numpy and Scipy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimised and parallelised Fortran routines. These Fortran routines heavily utilise Basic Linear Algebra (BLAS) and Linear Algebra Package (LAPACK) functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.