135 resultados para Branched Polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalisation in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective in reducing the interfacial thermal resistance, followed by methyl, phenyl and formyl. The other functional groups under consideration such as carboxyl, hydroxyl and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalised graphene for practical thermal management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly sodium acrylate (PSA)-coated Magnetic Nanoparticles (PSA-MNPs) were synthesized as smart osmotic draw agent (SMDA) for water desalination by forward osmosis (FO) process. The PSA-coated MNPs demonstrated significantly higher osmotic pressure (~ 30 fold) as well as high FO water flux (~ 2–3 fold) when compared to their polymer (polyelectrolyte) counterpart, even at a very low concentration of ~ 0.13 wt.% in the draw solution. The PSA polymer chain conformation – coiled to extended – demonstrates a significant impact on the availability of the polymer hydrophilic groups in solution which is the driving force to attain higher osmotic pressure and water flux. When an optimum concentration of the polymer was anchored to a NP surface, the polymer chains assume an extended open conformation making the functional hydrophilic groups available to attract water molecules. This in turn boosts the osmotic pressure and FO water flux of the PSA-MNP draw agents. The low concentration of the PSA-MNP osmotic agent and the associated high water flux enhances the cost-effectiveness of our proposed SMDA system. In addition, easier magnetic separation and regeneration of the SMDA also improves its usability making it efficient, cost-effective and environment-friendly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aim was to replace petroleum-based plastic packaging materials that pollute the environment, with biodegradable starch-based polymer composites. It was demonstrated that untreated sugar cane bagasse microfibres and unbleached nanofibres significantly improved the physical, mechanical and chemical properties of starch films, while thermal extrusion of starch with alcohol improved the stiffness and the addition of aconitic acid cross-linked the film making it moisture resistant and extensible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light emitting field effect transistors (LEFETs) are emerging as a multi-functional class of optoelectronic devices. LEFETs can simultaneously execute light emission and the standard logic functions of a transistor in a single architecture. However, current LEFET architectures deliver either high brightness or high efficiency but not both concurrently, thus limiting their use in technological applications. Here we show an LEFET device strategy that simultaneously improves brightness and efficiency. The key step change in LEFET performance arises from the bottom gate top-contact device architecture in which the source/drain electrodes are semitransparent and the active channel contains a bi-layer comprising of a high mobility charge-transporting polymer, and a yellow-green emissive polymer. A record external quantum efficiency (EQE) of 2.1% at 1000cd/m2 is demonstrated for polymer based bilayer LEFETs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility to selectively modulate the charge carrier transport in semiconducting materials is extremely challenging for the development of high performance and low-power consuming logic circuits. Systematical control over the polarity (electrons and holes) in transistor based on solution processed layer by layer polymer/graphene oxide hybrid system has been demonstrated. The conversion degree of the polarity is well controlled and reversible by trapping the opposite carriers. Basically, an electron device is switched to be a hole only device or vice versa. Finally, a hybrid layer ambipolar inverter is demonstrated in which almost no leakage of opposite carrier is found. This hybrid material has wide range of applications in planar p-n junctions and logic circuits for high-throughput manufacturing of printed electronic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A highly extended dithienothiophene comonomer building block was used in combination with highly fused aromatic furan substituted diketopyrrolopyrrole for the synthesis of novel donor–acceptor alternating copolymer PDPPF-DTT. Upon testing PDPPF-DTT as a channel semiconductor in top contact bottom gate organic field effect transistors (OFETs), it was found to exhibit p-channel behaviour. The highest hole mobility of 3.56 cm2 V−1 s−1 was reported for PDPPF-DTT. To our knowledge, this is the highest mobility reported so far for the furan flanked diketopyrrolopyrrole class of copolymers using conventional device geometry with straightforward processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many protocols have been used for extraction of DNA from Thraustochytrids. These generally involve the use of CTAB, phenol/chloroform and ethanol. They also feature mechanical grinding, sonication, N2 freezing or bead beating. However, the resulting chemical and physical damage to extracted DNA reduces its quality. The methods are also unsuitable for large numbers of samples. Commercially-available DNA extraction kits give better quality and yields but are expensive. Therefore, an optimized DNA extraction protocol was developed which is suitable for Thraustochytrids to both minimise expensive and time-consuming steps prior to DNA extraction and also to improve the yield. The most effective method is a combination of single bead in TissueLyser (Qiagen) and Proteinase K. Results were conclusive: both the quality and the yield of extracted DNA were higher than with any other method giving an average yield of 8.5 µg/100 mg biomass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the complex nature of diseased tissue in vivo requires development of more advanced nanomedicines, where synthesis of multifunctional polymers combines imaging multimodality with a biocompatible, tunable, and functional nanomaterial carrier. Here we describe the development of polymeric nanoparticles for multimodal imaging of disease states in vivo. The nanoparticle design utilizes the abundant functionality and tunable physicochemical properties of synthetically robust polymeric systems to facilitate targeted imaging of tumors in mice. For the first time, high-resolution 19F/1H magnetic resonance imaging is combined with sensitive and versatile fluorescence imaging in a polymeric material for in vivo detection of tumors. We highlight how control over the chemistry during synthesis allows manipulation of nanoparticle size and function and can lead to very high targeting efficiency to B16 melanoma cells, both in vitro and in vivo. Importantly, the combination of imaging modalities within a polymeric nanoparticle provides information on the tumor mass across various size scales in vivo, from millimeters down to tens of micrometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malnutrition is common in children with end-stage liver disease (ESLD) awaiting orthotopic liver transplantation (OLT), and nutritional support is assuming an important role in preoperative management. To evaluate preoperative nutritional therapy, 19 children (median age 1.25 y) with ESLD awaiting OLT were prospectively studied. Two high-energy, isoenergetic and isonitrogenous nutritional formulations delivered nasogastrically were compared: a branched-chain amino acid (BCAA)-enriched semielemental formulation and a matched standard semielemental formulation. Twelve of 19 patients completed a randomized controlled study before OLT and 10 of 19 completed a full crossover study. Improvements in weight and height occurred during the BCAA supplements, with no statistical change on the standard formulation. Significant increases in total body potassium, midupper arm circumference, and subscapular skinfold thickness occurred during the BCAA supplements, whereas no significant changes occurred during the standard formulation period. Significantly fewer albumin infusions were required during the BCAA supplement. These findings suggest that BCAA-enriched formulas have advantages over standard semielemental formulas in improving nutritional status in children with ESLD. and are deserving of wider application and study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose A modification of the existing PVA-​FX hydrogel has been made to investigate the use of a functionalised polymer in a Fricke gel dosimetry system to decrease Fe3+ diffusion. Methods The chelating agent, xylenol orange, was chem. bonded to the gelling agent, polyvinyl alc. (PVA) to create xylenol orange functionalised PVA (XO-​PVA)​. A gel was created from the XO-​PVA (20​% w​/v) with ferrous sulfate (0.4 mM) and sulfuric acid (50 mM)​. Results This resulted in an optical d. dose sensitivity of 0.014 Gy-​1, an auto-​oxidn. rate of 0.0005 h-​1, and a diffusion rate of 0.129 mm2 h-​1; an 8​% redn. compared to the original PVA-​FX gel, which in practical terms adds approx. 1 h to the time span between irradn. and accurate read-​out. Conclusions Because this initial method of chem. bonding xylenol orange to polyvinyl alc. has inherently low conversion, the improvement on existing gel systems is minimal when compared to the drawbacks. More efficient methods of functionalising polyvinyl alc. with xylenol orange must be developed for this system to gain clin. relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical utility of biodegradable magnesium implants is undermined by the untimely degradation of these materials in vivo. Their high corrosion rate leads to loss of mechanical integrity, peri–implant alkalization and localised accumulation of hydrogen gas. Biodegradable coatings were produced on pure magnesium using RF plasma polymerisation. A monoterpene alcohol with known anti-inflammatory and antibacterial properties was used as a polymer precursor. The addition of the polymeric layer was found to reduce the degradation rate of magnesium in simulated body fluid. The in vitro studies indicated good cytocompatibility of non-adherent THP–1 cells and mouse macrophage cells with the polymer, and the polymer coated sample. The viability of THP–1 cells was significantly improved when in contact with polymer encapsulated magnesium compared to unmodified samples. Collectively, these results suggest plasma enhanced polymer encapsulation of magnesium as a suitable method to control degradation kinetics of this biomaterial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma polymerization was used to coat a melt electrospun polycaprolactone scaffold to improve cell attachment and organization. Plasma polymerization was performed using an amine containing monomer, allylamine, which then allowed for the subsequent immobilization of biomolecules i.e. heparin and fibroblast growth factor-2. The stability of the plasma polymerized amine-coating was demonstrated by X-ray photoelectron spectroscopy analysis and imaging time-of-flight secondary ion mass spectrometry revealed that a uniform plasma amine-coating was deposited throughout the scaffold. Based upon comparison with controls it was evident that the combination scaffold aided cell ingress and the formation of distinct fibroblast and keratinocyte layers.