428 resultados para Boundary Inhomogeneity Method
Resumo:
Masks are widely used in different industries, for example, traditional metal industry, hospitals or semiconductor industry. Quality is a critical issue in mask industry as it is related to public health and safety. Traditional quality practices for manufacturing process have some limitations in implementing them in mask industries. This paper aims to investigate the suitability of Six Sigma quality control method for the manufacturing process in the mask industry to provide high quality products, enhancing the process capacity, reducing the defects and the returned goods arising in a selected mask manufacturing company. This paper suggests that modifications necessary in Six Sigma method for effective implementation in mask industry.
Resumo:
Axial shortening in vertical load bearing elements of reinforced concrete high-rise buildings is caused by the time dependent effects of shrinkage, creep and elastic shortening of concrete under loads. Such phenomenon has to be predicted at design stage and then updated during and after construction of the buildings in order to provide mitigation against the adverse effects of differential axial shortening among the elements. Existing measuring methods for updating previous predictions of axial shortening pose problems. With this in mind, a innovative procedure with a vibration based parameter called axial shortening index is proposed to update axial shortening of vertical elements based on variations in vibration characteristics of the buildings. This paper presents the development of the procedure and illustrates it through a numerical example of an unsymmetrical high-rise building with two outrigger and belt systems. Results indicate that the method has the capability to capture influence of different tributary areas, shear walls of outrigger and belt systems as well as the geometric complexity of the building.
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.
Resumo:
Differential distortion comprising axial shortening and consequent rotation in concrete buildings is caused by the time dependent effects of “shrinkage”, “creep” and “elastic” deformation. Reinforcement content, variable concrete modulus, volume to surface area ratio of elements and environmental conditions influence these distortions and their detrimental effects escalate with increasing height and geometric complexity of structure and non vertical load paths. Differential distortion has a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing methods for quantifying these effects are unable to capture the complexity of such time dependent effects. This paper develops a numerical procedure that can accurately quantify the differential axial shortening that contributes significantly to total distortion in concrete buildings by taking into consideration (i) construction sequence and (ii) time varying values of Young’s Modulus of reinforced concrete and creep and shrinkage. Finite element techniques are used with time history analysis to simulate the response to staged construction. This procedure is discussed herein and illustrated through an example.
Resumo:
In this paper, both Distributed Generators (DG) and capacitors are allocated and sized optimally for improving line loss and reliability. The objective function is composed of the investment cost of DGs and capacitors along with loss and reliability which are converted to the genuine dollar. The bus voltage and line current are considered as constraints which should be satisfied during the optimization procedure. Hybrid Particle Swarm Optimization as a heuristic based technique is used as the optimization method. The IEEE 69-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate that the lowest cost planning is found by optimizing both DGs and capacitors in distribution networks.
Resumo:
During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Gr¨unwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions – a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.
Resumo:
This research project examines the application of the Suzuki Actor Training Method (the Suzuki Method) within the work ofTadashi Suzuki's company in Japan, the Shizuoka Performing Arts Complex (SPAC), within the work of Brisbane theatre company Frank:Austral Asian Performance Ensemble (Frank:AAPE), and as related to the development of the theatre performance Surfacing. These three theatrical contexts have been studied from the viewpoint of a "participant- observer". The researcher has trained in the Suzuki Method with Frank:AAPE and SP AC, performed with Frank:AAPE, and was the solo performer and collaborative developer in the performance Surfacing (directed by Leah Mercer). Observations of these three groups are based on a phenomenological definition of the "integrated actor", an actor who is able to achieve a totality or unity between the body and the mind, and between the body and the voice, through a powerful sense of intention. The term "integrated actor" has been informed by the philosophy of Merleau-Ponty and his concept of the "lived body". Three main hypotheses are presented in this study: that the Suzuki Method focuses on actors learning through their body; that the Suzuki Method presents an holistic approach to the body and the voice; and that the Suzuki Method develops actors with a strong sense of intention. These three aspects of the Suzuki Method are explored in relation to the stylistic features of the work of SPAC, Frank:AAPE and the performance Surfacing.
Resumo:
LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.