124 resultados para Biodiversity hotspot
Resumo:
Welcome to this introductory guide on using a systems change model to embed Education for Sustainability (EfS) into teacher education. Pressing sustainability issues such as climate change, biodiversity loss and depletion of non-renewable resources pose new challenges for education. The importance of education in preparing future citizens to engage in sustainable living practices and help create a more sustainable world is widely acknowledged. As a result many universities around the world are beginning to recognize the need to integrate EfS into their teacher education programs. However, evidence indicates that there is little or no core EfS knowledge or pedagogy in pre-service teacher courses available to student teachers in a thorough and systematic fashion. Instead efforts are fragmented and individually or, at best, institutionally-based and lacking a systems approach to change, an approach that is seen as essential to achieving a sustainable society (Henderson & Tilbury, 2004). The result is new teachers are graduating without the necessary knowledge or skills to teach in ways that enable them to prepare their students to cope well with the new and emerging challenges their communities face. This guide has been prepared as part of a teaching and learning research project that applied a systems change approach to embedding the learning and teaching of sustainability into pre-service teacher education. The processes, outcomes and lessons learnt from this project are presented here as a guide for navigating pathways to systemic change in the journey of re-orienting teacher education towards sustainability. The guide also highlights how a systems change approach can be used to successfully enact change within a teacher education system. If you are curious about how to introduce and embed EfS into teacher education – or have tried other models and are looking for a more encompassing, transformative approach – this guide is designed to help you. The material presented in this guide is designed to be flexible and adaptive. However you choose to use the content, our aim is to help you and your students develop new perspectives, promote discussion and to engage with a system-wide approach to change.
Resumo:
Environmental degradation is a worldwide phenomenon. It is manifested in the clearing of forests, polluted waterways, soil erosion, the loss of biodiversity, the presence of chemicals in the ecosystem and a host of other concerns. Modern agricultural practices have been implicated in much of this degradation. This chapter explores the connections between the form of agricultural production undertaken in advanced nations – so called ‘productivist’ or ‘high-tech’ farming – and environmental degradation. It is argued, first, that the entrenchment of productivist agriculture has placed considerable, and continuing, pressures on the environment and, second, that while there are both new options for a more sustainable agriculture and new policies being proposed to tackle the existing problem, the underlying basis of productivist agriculture remains largely unchallenged. The prediction is that environmental degradation will continue unabated until more dramatic (and possibly less palatable) measures are taken to alter the behaviour of producers and the trajectory of farming and grazing industries throughout the world.
Resumo:
Environmental monitoring is becoming critical as human activity and climate change place greater pressures on biodiversity, leading to an increasing need for data to make informed decisions. Acoustic sensors can help collect data across large areas for extended periods making them attractive in environmental monitoring. However, managing and analysing large volumes of environmental acoustic data is a great challenge and is consequently hindering the effective utilization of the big dataset collected. This paper presents an overview of our current techniques for collecting, storing and analysing large volumes of acoustic data efficiently, accurately, and cost-effectively.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.