122 resultados para BASELINE CONCENTRATIONS
Resumo:
CONTEXT: The role and importance of circulating sclerostin is poorly understood. High bone mass (HBM) caused by activating LRP5 mutations has been reported to be associated with increased plasma sclerostin concentrations; whether the same applies to HBM due to other causes is unknown. OBJECTIVE: Our objective was to determine circulating sclerostin concentrations in HBM. DESIGN AND PARTICIPANTS: In this case-control study, 406 HBM index cases were identified by screening dual-energy x-ray absorptiometry (DXA) databases from 4 United Kingdom centers (n = 219 088), excluding significant osteoarthritis/artifact. Controls comprised unaffected relatives and spouses. MAIN MEASURES: Plasma sclerostin; lumbar spine L1, total hip, and total body DXA; and radial and tibial peripheral quantitative computed tomography (subgroup only) were evaluated. RESULTS: Sclerostin concentrations were significantly higher in both LRP5 HBM and non-LRP5 HBM cases compared with controls: mean (SD) 130.1 (61.7) and 88.0 (39.3) vs 66.4 (32.3) pmol/L (both P < .001, which persisted after adjustment for a priori confounders). In combined adjusted analyses of cases and controls, sclerostin concentrations were positively related to all bone parameters found to be increased in HBM cases (ie, L1, total hip, and total body DXA bone mineral density and radial/tibial cortical area, cortical bone mineral density, and trabecular density). Although these relationships were broadly equivalent in HBM cases and controls, there was some evidence that associations between sclerostin and trabecular phenotypes were stronger in HBM cases, particularly for radial trabecular density (interaction P < .01). CONCLUSIONS: Circulating plasma sclerostin concentrations are increased in both LRP5 and non-LRP5 HBM compared with controls. In addition to the general positive relationship between sclerostin and DXA/peripheral quantitative computed tomography parameters, genetic factors predisposing to HBM may contribute to increased sclerostin levels.
Resumo:
Quantification of pyridoxal-5´-phosphate (PLP) in biological samples is challenging due to the presence of endogenous PLP in matrices used for preparation of calibrators and quality control samples (QCs). Hence, we have developed an LC-MS/MS method for accurate and precise measurement of the concentrations of PLP in samples (20 µL) of human whole blood that addresses this issue by using a surrogate matrix and minimizing the matrix effect. We used a surrogate matrix comprising 2% bovine serum albumin (BSA) in phosphate buffer saline (PBS) for making calibrators, QCs and the concentrations were adjusted to include the endogenous PLP concentrations in the surrogate matrix according to the method of standard addition. PLP was separated from the other components of the sample matrix using protein precipitation with trichloroacetic acid 10% w/v. After centrifugation, supernatant were injected directly into the LC-MS/MS system. Calibration curves were linear and recovery was > 92%. QCs were accurate, precise, stable for four freeze-thaw cycles, and following storage at room temperature for 17h or at -80 °C for 3 months. There was no significant matrix effect using 9 different individual human blood samples. Our novel LC-MS/MS method has satisfied all of the criteria specified in the 2012 EMEA guideline on bioanalytical method validation.