125 resultados para Automatic tagging of music
Resumo:
Cyclists are among the most vulnerable road users. Many recent interventions have aimed at improving their safety on the road, such as the minimum overtaking distance rule introduced in Queensland in 2014. Smartphones offer excellent opportunities for technical intervention for road safety at a limited cost. Indeed, they have a lot of available processing power and many embedded sensors that allow analysing a rider's (or driver's) motion, behaviour, and environment; this is especially relevant for cyclists, as they do not have the space or power allowance that can be found in most motor vehicles. The aim of the study presented in this paper is to assess cyclists’ support for a range of new smartphone-based safety technologies. The preliminary results for an online survey with cyclists recruited from Bicycle Queensland and Triathlon Queensland, with N=191, are presented. A number of innovative safety systems such as automatic logging of incidents without injuries, reporting of dangerous area via a website/app, automatic notification of emergency services in case of crash or fall, and advanced navigation apps were assessed. A significant part of the survey is dedicated to GoSafeCycle, a cooperative collision prevention app based on motion tracking and Wi-Fi communications developed at CARRS-Q. Results show a marked preference toward automatic detection and notification of emergencies (62-70% positive assessment) and GoSafeCycle (61.7% positive assessment), as well as reporting apps (59.1% positive assessment). Such findings are important in the context of current promotion of active transports and highlight the need for further development of system supported by the general public.
Resumo:
This paper critiques a traditional approach to music theory pedagogy. It argues that music theory courses should draw on pedagogies that reflect the diversity and pluralism inherent in 21st century music making. It presents the findings of an action research project investigating the experiences of undergraduate students undertaking an innovative contemporary art music theory course. It describes the students’ struggle in coming to terms with a course that integrated composing, performing, listening and analysing coupled with what for many was their first exposure to the diversity of contemporary art music. The paper concludes with suggesting that the approach could be adopted more widely throughout music programs.
Resumo:
The G20 Finance Ministers have the opportunity this weekend to endorse the initial recommendations of the OECD on how to address the global problem of multinational tax avoidance. The work of the OECD on the issue to date is substantial. Most notable is the adoption by many nations, including Australia, of the Common Reporting Standard for the automatic exchange of tax information. This standard will allow significant inroads to be made into tax avoidance, particularly by individuals sheltering money offshore. This is the first step in an ambitious tax reform program. There is a long way to go if we are to end the issue now known as Base Erosion and Profit Shifting (BEPS). This week’s release of the first of the OECD recommendations contains some positive signs that further advances will be made. It also recognises some hard truths.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.
Resumo:
Twitter’s hashtag functionality is now used for a very wide variety of purposes, from covering crises and other breaking news events through gathering an instant community around shared media texts (such as sporting events and TV broadcasts) to signalling emotive states from amusement to despair. These divergent uses of the hashtag are increasingly recognised in the literature, with attention paid especially to the ability for hashtags to facilitate the creation of ad hoc or hashtag publics. A more comprehensive understanding of these different uses of hashtags has yet to be developed, however. Previous research has explored the potential for a systematic analysis of the quantitative metrics that could be generated from processing a series of hashtag datasets. Such research found, for example, that crisis-related hashtags exhibited a significantly larger incidence of retweets and tweets containing URLs than hashtags relating to televised events, and on this basis hypothesised that the information-seeking and -sharing behaviours of Twitter users in such different contexts were substantially divergent. This article updates such study and their methodology by examining the communicative metrics of a considerably larger and more diverse number of hashtag datasets, compiled over the past five years. This provides an opportunity both to confirm earlier findings, as well as to explore whether hashtag use practices may have shifted subsequently as Twitter’s userbase has developed further; it also enables the identification of further hashtag types beyond the “crisis” and “mainstream media event” types outlined to date. The article also explores the presence of such patterns beyond recognised hashtags, by incorporating an analysis of a number of keyword-based datasets. This large-scale, comparative approach contributes towards the establishment of a more comprehensive typology of hashtags and their publics, and the metrics it describes will also be able to be used to classify new hashtags emerging in the future. In turn, this may enable researchers to develop systems for automatically distinguishing newly trending topics into a number of event types, which may be useful for example for the automatic detection of acute crises and other breaking news events.