149 resultados para Artificial satellites, American
Resumo:
The paper examines the knowledge of pedestrian movements, both in real scenarios, and from more recent years, in the virtual 4 simulation realm. Aiming to verify whether it is possible to learn from the study of virtual environments how people will behave in real 5 environments, it is vital to understand what is already known about behavior in real environments. Besides the walking interaction among 6 pedestrians, the interaction between pedestrians and the built environment in which they are walking also have greatest relevance. Force-based 7 models were compared with the other three major microscopic models of pedestrian simulation to demonstrate a more realistic and capable 8 heuristic approach is needed for the study of the dynamics of pedestrians.
Resumo:
Swietenia macrophylla King (Meliaceae: Swietenioideae) provides one of the premier timbers of the world. The mahogany shoot borer Hypsipyla robusta Moore (Lepidoptera: Pyralidae) is an economically important pest of S. macrophylla throughout Asia, Africa and the Pacific. No viable method of controlling this pest is known. Previous observations have suggested that the presence of overhead shade may reduce attack by H. robusta, but this has not been investigated experimentally. This research was therefore designed to assess the influence of light availability on shoot-borer attack on S. macrophylla, by establishing seedlings under three different artificial shade regimes, then using these seedlings to test oviposition preference of adult moths, neonate larval survival and growth and development of shoot borer larvae. Oviposition preference of shoot borer moths was tested on leaves from seedlings grown under artificial shade for 63 weeks. A significant difference in choice was recorded between treatments, with 27.4 ± 1.5 eggs laid under high shade and 87.1 ± 1.8 under low shade. Neonate larval survival on early flushing leaflets of S. macrophylla did not differ significantly between shade treatments. Larval growth rate, estimated by measuring daily frass width, was significantly higher for those larvae fed on seedlings from the high and medium shade treatments (0.1 mm/day), than the low shade treatment (0.06 mm/day). In laboratory-reared larvae, the total mass of frass produced was significantly higher in the high shade treatment (0.4 g) than under the low shade treatment (0.2 g). Longer tunnel lengths were bored by larvae in plants grown under high shade (12.0 ± 2.4 cm) than under low shade (7.07 ± 1.9 cm). However, pupal mass under low shade was 48% higher than that under the high shade treatment, suggesting that plants grown under high shade were of lower nutritional quality for shoot borer larvae. These results indicate that shading of mahogany seedlings may reduce the incidence of shoot borer attack, by influencing both oviposition and larval development. The establishment of mahogany under suitable shade regimes may therefore provide a basis for controlling shoot borer attack using silvicultural approaches.
Resumo:
In the years since Nicolas Bourriaud’s Relational Aesthetics (1998) was published, a plethora of books (Shannon Jackson’s Social Works: Performing Art, Supporting Publics [2011], Nato Thompson’s Living as Form: Socially Engaged Art from 1991–2011 [2011], Grant Kester’s Conversation Pieces: Community and Communication in Modern Art [2004], Pablo Helguera’s Education for Socially Engaged Art: A Material and Techniques Handbook [2011]), conferences and articles have surfaced creating a rich and textured discourse that has responded to, critiqued and reconfigured the proposed social utopias of Bourriaud’s aesthetics. As a touchstone for this emerging discourse, Relational Aesthetics outlines in a contemporary context the plethora of social and process-based art forms that took as their medium the ‘social’. It is, however, Clare Bishop’s book Artificial Hells: Participatory Art and the Politics of Spectatorship (Verso), that offers a deeper art historical and theoretically considered rendering of this growing and complicated form of art, and forms a central body of work in this broad constellation of writings about participatory art, or social practice art/socially engaged art (SEA), as it is now commonly known...
Resumo:
A review of Philip Glass's opera The Perfect American. The Brisbane Festival’s production of Philip Glass’s opera The Perfect American is only the third production of the 2012 work ever to be staged. That’s quite a coup for the Brisbane Festival and Opera Queensland. The Perfect American was commissioned by Madrid’s Teatro Real and London’s English National Opera to mark the American composer’s 75th birthday. Glass’s telling of the Disney myth focuses on the final stages of Walt Disney’s life and career – a high art critique of a popular culture icon...
Resumo:
The advent of very high resolution (VHR) optical satellites capable of producing stereo images led to a new era in extracting digital elevation model which commenced with the launch of IKONOS. The special specifications of VHR optical satellites besides, the significant economic profit stimulated other countries and companies to have their constellations such as EROS-A1 and EROS-B1 as the cooperation between Israel and ImageSat. QuickBird, WorldView-1 and WorldVew-2 were launched by DigitalGlobe. ALOS and GeoEye-1 were offered by Japan and GeoEye Respectively. In addition to aforementioned satellites, Indian and South Korea initiated their own constellation by launching CartoSat-1 and KOPOSAT-2 respectively.The availability of all so-called satellites make a huge market of stereo images for extracting of digital elevation model and other correspondent applications such as, producing orthorectifcatin images and updating maps. Therefore, there is a need for a comprehensive comparison for scientific and commercial clients to choose appropriate satellite images and methods of generating digital elevation model to obtain optimum results. This paper will thus give a review about the specifications of VHR optical satellites. Then it will discuss the automatic elaborating of digital elevation model. Finally an overview of studies and corresponding results is reported.
Resumo:
In Australian cinema since the mid-2000s, horror has become a popular and at times commercially viable genre for low-budget and emerging filmmakers targeting international markets. While the annual horror film output of Australia pales in comparison to that of other Anglophone nations like the United States, Great Britain, and Canada, it has produced several significant titles that have performed moderately well at the international box office, from Wolf Creek (Greg McLean, 2005) to Daybreakers (Michael and Peter Spierig, 2009). Yet as part of a broader tradition of Anglophone horror cinema, many Australian horror movies have been heavily influenced by US and to a lesser extent British horror films. Furthermore, Australian horror film production is largely an internationally-oriented sector that relies on its relationships with overseas distributors and often investors. Consequently, the content and style of Australian horror movies have regularly been tailored for international markets. As a direct consequence some filmmakers have sought to trade on the “Australianness” of their product, others have attempted to pass off their films as faux-American, while others still have attempted to develop placeless films effaced of national reference points. This chapter examines local production as part of a broader tradition of Anglophone horror cinema, the influence of US horror movies, and the limitations of the domestic marketplace. The article concludes with an analysis of how the lure of the US market influences Australian filmmakers’ textual strategies.
Resumo:
Purpose To report an unusual case of a late-stage reactivation of immune stromal keratitis associated with herpes zoster ophthalmicus (HZO), occurring without any apparent predisposing factors, more than 4 years after an acute zoster dermatomal rash. Significant corneal hypoesthesia and a central band keratopathy developed within 6 months of the late-stage reactivation. The clinical case management, issues associated with management, and management options are discussed, including the use of standardized, regulatory approved, antibacterial medical honey. Case Report An 83-year-old woman presented for routine review with a reactivation of right anterior stromal keratitis and mild anterior uveitis, occurring more than 4 years after an acute HZO dermatomal rash and an associated initial episode of anterior stromal keratitis. Corneal sensation became markedly impaired, and over the subsequent 6 months, a right central band keratopathy developed despite oral antiviral and topical steroid therapy. Visual acuity with pinhole was reduced to 20/100 in the affected eye and moderate irritation and epiphora were experienced. The patient declined the surgical intervention options of chelation, lamellar keratectomy, and phototherapeutic keratectomy to treat the band keratopathy. Longer-term management has involved preservative-free artificial tears, eyelid hygiene, standardized antibacterial medical honey, topical nonpreserved steroid, and UV-protective wraparound sunglasses. The clinical condition has improved over 14 months with this ocular surface management regimen, and visual acuity of 20/30 is currently achieved in a comfortable eye. Conclusions The chronic and recurrent nature of HZO can be associated with significant corneal morbidity, even many years after the initial zoster episode. Long-term review and management of patients with a history of herpes zoster stromal keratitis are indicated following the initial corneal involvement. Standardized antibacterial medical honey can be considered in the management of the chronic ocular surface disease associated with HZO and warrants further evaluation in clinical trials.
Resumo:
A genetically and morphologically divergent population of c.500 American Flamingos, isolated from the parental Caribbean stock of Phoenicopterus ruber, occurs in the Galapagos archipelago. Based primarily on data from a 3-year study, we provide the first description of the feeding and breeding biology of this population. Galapagos provides a suitable habitat comprising lagoons on a number of islands, among which the flamingos travel in response to food and nest site availability. The occurrence and qualnity of some food species was associated with the chlorosity of lagoon water, as was the distribution of flamingos. They bred opportunistically at five lagoons on four islands, sometimes simultaneously on more than one island. Group display usually involved approx 20 birds and colonies contained as few as three nests. Laying occurred during nine months of the year... We review potential dangers to this unique population and suggest conservation measures.
Resumo:
Automated remote ultrasound detectors allow large amounts of data on bat presence and activity to be collected. Processing of such data involves identifying bat species from their echolocation calls. Automated species identification has the potential to provide more consistent, predictable, and potentially higher levels of accuracy than identification by humans. In contrast, identification by humans permits flexibility and intelligence in identification, as well as the incorporation of features and patterns that may be difficult to quantify. We compared humans with artificial neural networks (ANNs) in their ability to classify short recordings of bat echolocation calls of variable signal to noise ratios; these sequences are typical of those obtained from remote automated recording systems that are often used in large-scale ecological studies. We presented 45 recordings (1–4 calls) produced by known species of bats to ANNs and to 26 human participants with 1 month to 23 years of experience in acoustic identification of bats. Humans correctly classified 86% of recordings to genus and 56% to species; ANNs correctly identified 92% and 62%, respectively. There was no significant difference between the performance of ANNs and that of humans, but ANNs performed better than about 75% of humans. There was little relationship between the experience of the human participants and their classification rate. However, humans with <1 year of experience performed worse than others. Currently, identification of bat echolocation calls by humans is suitable for ecological research, after careful consideration of biases. However, improvements to ANNs and the data that they are trained on may in future increase their performance to beyond those demonstrated by humans.
Resumo:
Time-expanded and heterodyned echolocation calls of the New Zealand long-tailed Chalinolobus tuberculatus and lesser short-tailed bat Mystacina tuberculata were recorded and digitally analysed. Temporal and spectral parameters were measured from time-expanded calls and power spectra generated for both time-expanded and heterodyned calls. Artificial neural networks were trained to classify the calls of both species using temporal and spectral parameters and power spectra as input data. Networks were then tested using data not previously seen. Calls could be unambiguously identified using parameters and power spectra from time-expanded calls. A neural network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 40 kHz (the frequency with the most energy of the fundamental of C. tuberculatus call), could identify 99% and 84% of calls of C. tuberculatus and M. tuberculata, respectively. A second network, trained and tested using power spectra of calls from both species recorded using a heterodyne detector set to 27 kHz (the frequency with the most energy of the fundamental of M. tuberculata call), could identify 34% and 100% of calls of C. tuberculatus and M. tuberculata, respectively. This study represents the first use of neural networks for the identification of bats from their echolocation calls. It is also the first study to use power spectra of time-expanded and heterodyned calls for identification of chiropteran species. The ability of neural networks to identify bats from their echolocation calls is discussed, as is the ecology of both species in relation to the design of their echolocation calls.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals.