138 resultados para Allergy and Immunology
Resumo:
The koala (Phascolarctos cinereus) is an iconic Australian marsupial species that is facing many threats to its survival. Chlamydia pecorum infections are a significant contributor to this ongoing decline. A major limiting factor in our ability to manage and control chlamydial disease in koalas is a limited understanding of the koala’s cell-mediated immune response to infections by this bacterial pathogen. To identify immunological markers associated with chlamydial infection and disease in koalas, we used koala-specific Quantitative Real Time PCR (qrtPCR) assays to profile the cytokine responses of Peripheral Blood Mononuclear Cells (PBMCs) collected from 41 koalas with different stages of chlamydial disease. Target cytokines included the principal Th1 (Interferon gamma; IFNγ), Th2 (Interleukin 10; IL10), and pro-inflammatory cytokines (Tumor Necrosis Factor alpha; TNFα). A novel koala-specific IL17A qrtPCR assay was also developed as part of this study to quantitate the gene expression of this Th17 cytokine in koalas. A statistically significant higher IL17A gene expression was observed in animals with current chlamydial disease compared to animals with asymptomatic chlamydial infection. A modest up-regulation of pro-inflammatory cytokines, such as TNFα and IFNγ, was also observed in these animals with signs of current chlamydial disease. IL10 gene expression was not evident in the majority of animals from both groups. Future longitudinal studies are now required to confirm the role played by cytokines in pathology and/or protection against C. pecorum infection in the koala.
Resumo:
Transfusion of blood components has been associated with poor patient outcomes and, an overall increase in morbidity and mortality. Differences in the blood components arising from donor health, age and immune status may impact on outcomes of transfusion and transfusion-related immune modulation in recipients. The aim of this study was to investigate differences in inflammatory profile in donors and association with parameters including age, gender and deficiency status of pattern recognition molecule mannose-binding lectin (MBL). MBL level was determined by ELISA. Serum levels of interleukin (IL)-1α, IL-1β, IL-6, IL-8, IL-10, IL-12, tumour necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1α, monocyte chemoattractant protein (MCP)-1, interferon (IFN)-α, and IFN-γ were examined by cytometric bead array (CBA). C-reactive protein (CRP) and rheumatoid factor (RF) were examined by immunoturbidimetry. This study demonstrated age was a parameter associated with the immune profile of blood donors, with significant increases in MCP-1 (p < 0.05) and RF (p < 0.05) and decreases in IL-1α evident in the older donors (61–76 years). Significant gender-associated differences in MCP-1, IL-12 and CRP plasma levels in the blood donor cohort were also reported. There was no significant difference in the level of any inflammatory markers studied according to MBL status. This study demonstrated that age and gender are associated with inflammatory profile in donors. These differences may be a factor impacting on outcomes of transfusion.
Resumo:
This thesis successfully introduced the intellectual framework of immunology in the development of bone biomaterials. The project identified the regulatory role of biomaterials to the immune-response in terms of bone formation and healing of bone defects. The novel methods developed in the project will significantly change the ways of biomaterials assessment and evaluation.
Resumo:
Background: Eosinophilic esophagitis (EE) is an emerging condition where patients commonly present with symptoms of gastroesophageal reflux disease and fail to respond adequately to anti-reflux therapy. Food allergy is currently recognized as the main immunological cause of EE; recent evidence suggests an etiological role for inhalant allergens. The presence of EE appears to be associated with other atopic illnesses. Objectives: To report the sensitization profile of both food and inhalant allergens in our EE patient cohort in relation to age, and to profile the prevalence of other allergic conditions in patients with EE. Method: The study prospectively analyzed allergen sensitization profiles using skin prick tests to common food allergens and inhalant allergens in 45 children with EE. Patch testing to common food allergens was performed on 33 patients in the same cohort. Comorbidity of atopic eczema, asthma, allergic rhinitis and anaphylaxis were obtained from patient history. Results: Younger patients with EE showed more IgE and patch sensitization to foods while older patients showed greater IgE sensitization to inhalant allergens. The prevalence of atopic eczema, allergic rhinitis and asthma was significantly increased in our EE cohort compared with the general Australian population. A total of 24% of our cohort of patients with EE had a history of anaphylaxis. Conclusion: In children with EE, the sensitization to inhalant allergens increases with age, particularly after 4 years. Also, specific enquiry about severe food reactions in patients presenting with EE is strongly recommended as it appears this patient group has a high incidence of anaphylaxis. © 2007 The Authors.
Resumo:
Psoriasis and psoriatic arthritis are common conditions for which treatment options have until recently been extremely limited. Recent advances in our understanding of the immunology and genetics underlying these conditions have been rapid, and have contributed to the development of new therapies for these diseases. This article discusses the current state of the art in our understanding of the aetiopathogenesis of psoriasis and psoriatic arthritis, and current therapies for the diseases.
Resumo:
Objectives. Strong genetic association of rheumatoid arthritis (RA) with PADI4 (peptidyl arginine deiminase) has previously been described in Japanese, although this was not confirmed in a subsequent study in the UK. We therefore undertook a further study of genetic association between PADI4 and RA in UK Caucasians and also studied expression of PADI4 in the peripheral blood of patients with RA. Methods. Seven single-nucleotide polymorphisms (SNP) were genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism in 111 RA cases and controls. A marker significantly associated with RA (PADI4_100, rs#2240339) in this first data set (P = 0.03) was then tested for association in a larger group of 439 RA patients and 428 controls. PADI4 transcription was also assessed by real-time quantitative PCR using RNA extracted from peripheral blood mononuclear cells from 13 RA patients and 11 healthy controls. Results. A single SNP was weakly associated with RA (P = 0.03) in the initial case-control study, a single SNP (PADI4_100) and a two marker haplotype of that SNP and the neighbouring SNP (PADI4_04) were significantly associated with RA (P = 0.02 and P = 0.03 respectively). PADI4_100 was not associated with RA in a second sample set. PADI4 expression was four times greater in cases than controls (P = 0.004), but expression levels did not correlate with the levels of markers of inflammation. Conclusion. PADI4 is significantly overexpressed in the blood of RA patients but genetic variation within PADI4 is not a major risk factor for RA in Caucasians.
Resumo:
To evaluate the passage of cytokines through the gastrointestinal tract, we investigated the digestion of interleukin-8 (IL-8) and tumour necrosis factor α (TNFα), in vitro and in vivo, and their propensity to induce intestinal inflammation. We serially immuno-assayed IL-8 and TNFα solutions co-incubated with each of three pancreatin preparations at pH 4.5 and pH 8. We gavaged IL-8, TNFα and marker into 15 Wistar rats, and measured their faecal cytokine concentrations by ELISA and histologically examined their guts. IL-8 immunoreactivity was extinguished by all pancreatin preparations after 1 h of incubation at 37 °C. TNFα concentration progressively fell from 1 to 4 h with all enzyme preparations. Buffer control samples maintained their cytokine concentrations throughout incubation. No IL-8 or TNFα was detected in any rat faecal pellets. There was no significant proinflammatory effect of the gavaged cytokines on rat intestine. IL-8 and TNFα in aqueous solution could well be fully digested in the CF gut when transit time is normal and exogenous enzymes are provided, although cytokines swallowed in viscous sputum may be protected from such digestion
Resumo:
Urinary tract infections are a major source of morbidity for women and the elderly, with Uropathogenic Escherichia coli (UPEC) being the most prevalent causative pathogen. Studies in recent years have defined a key anti-inflammatory role for Interleukin-10 (IL-10) in urinary tract infection mediated by UPEC and other uropathogens. We investigated the nature of the IL-10-producing interactions between UPEC and host cells by utilising a novel co-culture model that incorporated lymphocytes, mononuclear and uroepithelial cells in histotypic proportions. This co-culture model demonstrated synergistic IL-10 production effects between monocytes and uroepithelial cells following infection with UPEC. Membrane inserts were used to separate the monocyte and uroepithelial cell types during infection and revealed two synergistic IL-10 production effects based on contact-dependent and soluble interactions. Analysis of a comprehensive set of immunologically relevant biomarkers in monocyte-uroepithelial cell co-cultures highlighted that multiple cytokine, chemokine and signalling factors were also produced in a synergistic or antagonistic fashion. These results demonstrate that IL-10 responses to UPEC occur via multiple interactions between several cells types, implying a complex role for infection-related IL-10 during UTI. Development and application of the co-culture model described in this study is thus useful to define the degree of contact dependency of biomarker production to UPEC, and highlights the relevance of histotypic co-cultures in studying complex host-pathogen interactions.
Resumo:
Background: In November 2013, the Queensland Department of Health announced its intention to pilot pharmacist vaccination for influenza in the 2014 flu season. The Pharmaceutical Society of Australia Queensland Branch was tasked with developing a training program for the pilot. Aim: The aim was to develop, implement and evaluate a training program for pharmacist vaccination relevant to the needs of Australian pharmacists. Method: Background content was delivered via two online modules, while training for practical injection skills and anaphylaxis management were provided in a face-to-face workshop. Participants were required to complete the Australasian Society of Clinical Immunology and Allergy (ASCIA) anaphylaxis e-training for pharmacists, and hold a current First-Aid and CPR certificate. On completion of the course, pharmacists were asked to evaluate the training program. Results: Overall, 157 pharmacists across Queensland completed the training. Participants rated the training highly on a 5-point Likert scale (>4.4 for all fields) for relevance to practice, comfort with the skill, confidence to do the task and relevance of the learning objectives to the training. Qualitative feedback indicated that a key component of the training was the ability to practice injections on each other. Conclusion: The findings demonstrate participants felt prepared for vaccination following completion of the training program, as reflected in the high level of confidence reported. A follow-up post-pilot will explore if this confidence was translated into practice during the implementation phase.
Resumo:
Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.
Resumo:
Sexually transmitted Chlamydia trachomatis causes infertility, and because almost 90% of infections are asymptomatic, a vaccine is required for its eradication. Mathematical modeling studies have indicated that a vaccine eliciting partial protection (non-sterilizing) may prevent Chlamydia infection transmission, if administered to both sexes before an infection. However, reducing chlamydial inoculum transmitted by males and increasing infection resistance in females through vaccination to elicit sterilizing immunity has yet to be investigated experimentally. Here we show that a partially protective vaccine (chlamydial major outer membrane protein (MOMP) and ISCOMATRIX (IMX) provided sterilizing immunity against sexual transmission between immunized mice. Immunizing male or female mice before an infection reduced chlamydial burden and disease development, but did not prevent infection. However, infection and inflammatory disease responsible for infertility were absent in 100% of immunized female mice challenged intravaginally with ejaculate collected from infected immunized males. In contrast to the sterilizing immunity generated following recovery from a previous chlamydial infection, protective immunity conferred by MOMP/IMX occurred independent of resident memory T cells. Our results demonstrate that vaccination of males or females can further protect the opposing sex, whereas vaccination of both sexes can synergize to elicit sterilizing immunity against Chlamydia sexual transmission.
Resumo:
Objective The human Ureaplasma species are the microbes most frequently isolated from placentae of women who deliver preterm. The role of Ureaplasma species has been investigated in pregnancies at <32 weeks of gestation, but currently no studies have determined the prevalence of ureaplasmas in moderately preterm and late-preterm (hereafter, “moderate/late preterm”) infants, the largest cohort of preterm infants. Methods Women delivering moderate/late preterm infants (n = 477) and their infants/placentae (n = 535) were recruited, and swab specimens of chorioamnion tissue, chorioamnion tissue specimens, and cord blood specimens were obtained at delivery. Swab and tissue specimens were cultured and analyzed by 16S ribosomal RNA polymerase chain reaction (PCR) for the presence of microorganisms, while cord blood specimens were analyzed for the presence of cytokines, chemokines, and growth factors. Results We detected microorganisms in 10.6% of 535 placentae (443 were delivered late preterm and 92 were delivered at term). Significantly, Ureaplasma species were the most prevalent microorganisms, and their presence alone was associated with histologically confirmed chorioamnionitis in moderate/late preterm and term placentae (P < .001). The presence of ureaplasmas in the chorioamnion was also associated with elevated levels of granulocyte colony-stimulating factor (P = .02). Conclusions These findings have important implications for infection and adverse pregnancy outcomes throughout gestation and should be of major consideration for obstetricians and neonatologists.
A combination of local inflammation and central memory T cells potentiates immunotherapy in the skin
Resumo:
Adoptive T cell therapy uses the specificity of the adaptive immune system to target cancer and virally infected cells. Yet the mechanism and means by which to enhance T cell function are incompletely described, especially in the skin. In this study, we use a murine model of immunotherapy to optimize cell-mediated immunity in the skin. We show that in vitro - derived central but not effector memory-like T cells bring about rapid regression of skin-expressing cognate Ag as a transgene in keratinocytes. Local inflammation induced by the TLR7 receptor agonist imiquimod subtly yet reproducibly decreases time to skin graft rejection elicited by central but not effector memory T cells in an immunodeficient mouse model. Local CCL4, a chemokine liberated by TLR7 agonism, similarly enhances central memory T cell function. In this model, IL-2 facilitates the development in vivo of effector function from central memory but not effector memory T cells. In a model of T cell tolerogenesis, we further show that adoptively transferred central but not effector memory T cells can give rise to successful cutaneous immunity, which is dependent on a local inflammatory cue in the target tissue at the time of adoptive T cell transfer. Thus, adoptive T cell therapy efficacy can be enhanced if CD8+ T cells with a central memory T cell phenotype are transferred, and IL-2 is present with contemporaneous local inflammation. Copyright © 2012 by The American Association of Immunologists, Inc.
Resumo:
Gamma delta T cells are thought to mediate immune responses at epithelial surfaces. We have quantified and characterized hepatic and peripheral blood gamma delta T cells from 11 normal and 13 unresolved tumor-bearing human liver specimens. gamma delta T cells are enriched in normal liver (6.6% of T cells) relative to matched blood (0.9%; P = 0.008). The majority express CD4(-)CD8(-) phenotypes and many express CD56 and/or CD161. In vitro, hepatic gamma delta T cells can be induced to kill tumor cell lines and release interferon-gamma, tumor necrosis factor-alpha, interleukin-2 and interleukin-4. Analysis of V gamma and V delta chain usage indicated that V delta 3(+) cells are expanded in normal livers (21.2% of gamma delta T cells) compared to blood (0.5%; P = 0.001). Tumor-bearing livers had significant expansions and depletions of gamma delta T cell subsets but normal cytolytic activity. This study identifies novel populations of liver T cells that may play a role in immunity against tumors.
Resumo:
A major group of murine NK T (NKT) cells express an invariant Vα14Jα18 TCR α-chain specific for glycolipid Ags presented by CD1d. Murine Vα14Jα18+ account for 30–50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Vα24Vβ11+ NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3+ cells) and blood (0.02%). In contrast to those in blood, most hepatic Vα24+ NKT cells express the Vβ11 chain. They include CD4+, CD8+, and CD4−CD8− cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Vα24+ T cells are potent producers of IFN-γ and TNF-α, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, α-galactosylceramide. Vα24+Vβ11+ cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-γ in response to α-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.