180 resultados para Aerial view
Resumo:
Kate Nayton, Elaine Fielding and Elizabeth Beattie describe how they developed a successful program to educate hospital staff about dementia care. The program may soon be trialled in other acute care facilities.
Resumo:
The perceived desirability of water views continues to lead to increasing numbers relocating to coastal regions. Proximity to coastal water brings with it unique risks from rising sea levels; however, water can present a risk in any area, whether or not you have water views. Recent Australian and international disasters show that even inland populations not located in traditional flood areas are not immune from water risks. The author examines the nature of these risks and shows how the internet can be used as a tool in identifying risk areas. The author also highlights the need to ensure accuracy of the data for valuation and planning purposes and identifies flaws in the current data provision.
Resumo:
A test of the useful field of view was introduced more than two decades ago and was designed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk, as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers and measure speed of visual processing speed for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher order cognitive abilities, but performance also relies on visual sensory function since targets must be visible in order to be attended to. The format of the useful field of view test has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest versions measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and have a positive impact on health and functional well being, with the potential to increase the mobility and hence independence of older adults.
Resumo:
Significant investments in developing technological innovations have been made in the Australian beef industry but with low adoption rates. By modelling the key variables and their interactions in the innovation adoption process, this research seeks to demonstrate the complexity and dynamics of the process. This research uses causal loop modelling and develops a holistic model of the current innovation adoption system in the Australian beef industry to show the complexity of dynamic interactions among multiple variables. It is suggested that innovation adoption is such an extremely complex issue, and we need to shift our views on this issue from a paradigm of linear thinking to systems thinking. Innovation adoption is more likely to be enhanced based on a full understanding of the complexity and dynamics of the system as a whole. The paper demonstrates to practitioners and developers of innovation the multiple variables and interactions impacting innovation adoption.
Resumo:
A large number of methods have been published that aim to evaluate various components of multi-view geometry systems. Most of these have focused on the feature extraction, description and matching stages (the visual front end), since geometry computation can be evaluated through simulation. Many data sets are constrained to small scale scenes or planar scenes that are not challenging to new algorithms, or require special equipment. This paper presents a method for automatically generating geometry ground truth and challenging test cases from high spatio-temporal resolution video. The objective of the system is to enable data collection at any physical scale, in any location and in various parts of the electromagnetic spectrum. The data generation process consists of collecting high resolution video, computing accurate sparse 3D reconstruction, video frame culling and down sampling, and test case selection. The evaluation process consists of applying a test 2-view geometry method to every test case and comparing the results to the ground truth. This system facilitates the evaluation of the whole geometry computation process or any part thereof against data compatible with a realistic application. A collection of example data sets and evaluations is included to demonstrate the range of applications of the proposed system.
Resumo:
Oxygen has been the “holy grail” of contact lens wear for over 100 years, but it is just one piece of a complex jigsaw puzzle. Clearly, high oxygen transmissibility (Dk/t) silicone hydrogel lenses meet the oxygen needs of the cornea. The Dk/t of these lenses is over 75 Dk units, which is far above that of the “best” hydrogel lenses (30 Dk units). Clinical trials have failed to reveal any hypoxic problemswith silicone hydrogel lenses. Thus, conditions such as epithelial microcysts, limbal redness, hypoxic staining, stromal neovascularisation, oedema and endothelial polymegethism do not occur with these lenses. My view is that – looking at the “big picture” – we are far better off now that we have silicone hydrogel lenses.
Resumo:
Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
Cinema is central to the mediation of history and the construction of imaginative geographies that offer a politicized view of the land and its people. This article investigates cinematic representations of landscape and analyses the ways in which maps and journeys in Charles Chauvel’s film Jedda (1955) and Baz Luhrmann’s Australia (2008)—both set in the far North of Australia—articulate conceptions of “Australianness” in relationship to Indigeneity and the land. We argue the exotic tropics and arid outback regions of northern Australia function metonymically as representative of the nation in these films, working to naturalize ideological values and affirm dominant narratives of history, identity, and entitlement.
Resumo:
In this paper, the problem of moving object detection in aerial video is addressed. While motion cues have been extensively exploited in the literature, how to use spatial information is still an open problem. To deal with this issue, we propose a novel hierarchical moving target detection method based on spatiotemporal saliency. Temporal saliency is used to get a coarse segmentation, and spatial saliency is extracted to obtain the object’s appearance details in candidate motion regions. Finally, by combining temporal and spatial saliency information, we can get refined detection results. Additionally, in order to give a full description of the object distribution, spatial saliency is detected in both pixel and region levels based on local contrast. Experiments conducted on the VIVID dataset show that the proposed method is efficient and accurate.
Resumo:
Disjoint top-view networked cameras are among the most commonly utilized networks in many applications. One of the open questions for these cameras' study is the computation of extrinsic parameters (positions and orientations), named extrinsic calibration or localization of cameras. Current approaches either rely on strict assumptions of the object motion for accurate results or fail to provide results of high accuracy without the requirement of the object motion. To address these shortcomings, we present a location-constrained maximum a posteriori (LMAP) approach by applying known locations in the surveillance area, some of which would be passed by the object opportunistically. The LMAP approach formulates the problem as a joint inference of the extrinsic parameters and object trajectory based on the cameras' observations and the known locations. In addition, a new task-oriented evaluation metric, named MABR (the Maximum value of All image points' Back-projected localization errors' L2 norms Relative to the area of field of view), is presented to assess the quality of the calibration results in an indoor object tracking context. Finally, results herein demonstrate the superior performance of the proposed method over the state-of-the-art algorithm based on the presented MABR and classical evaluation metric in simulations and real experiments.
Resumo:
Pandemic influenza will cause significant social and economic disruption. Legal frameworks can play an important role in clarifying the rights and duties of individuals, communities and governments for times of crisis. In addressing legal frameworks, there is a need for jurisdictional clarity between different levels of government in responding to public health emergencies. Public health laws are also informed by our understandings of rights and responsibilities for individuals and communities, and the balancing of public health and public freedoms. Consideration of these issues is an essential part of planning for pandemic influenza.
Resumo:
Building on the attention-based view, we argue that companies need a challenging mechanism to focus their absorptive capacity attention on corporate entrepreneurship versus mainstream activities or other purposes. We suggest entrepreneurial management as the attential driver for deploying absorptive capacity towards corporate entrepreneurship. From our analysis of a sample of 331 supplier companies providing products and services to the mining industry of Australia and Iran, we observe that absorptive capacity positively affects corporate entrepreneurship. The data also demonstrate that the effect of absorptive on corporate entrepreneurship increases when firms adopt the entrepreneurial culture and reward systems. However, the entrepreneurial growth and resource orientations negatively moderate the relationship between absorptive capacity and corporate entrepreneurship.
Resumo:
This thesis describes the investigation of an Aircraft Dynamic Navigation (ADN) approach, which incorporates an Aircraft Dynamic Model (ADM) directly into the navigation filter of a fixed-wing aircraft or UAV. The result is a novel approach that offers both performance improvements and increased reliability during short-term GPS outages. This is important in allowing future UAVs to achieve routine, unconstrained, and safe operations in commercial environments. The primary contribution of this research is the formulation Unscented Kalman Filter (UKF) which incorporates a complex, non-linear, laterally and longitudinally coupled, ADM, and sensor suite consisting of a Global Positioning System (GPS) receiver, Inertial Measurement Unit (IMU), Electronic Compass (EC), and Air Data (AD) Pitot Static System.