233 resultados para 7137-116
Resumo:
Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand causal factors that contribute to these accidents, the Cooperative Research Centre for Rail Innovation is running a project entitled Baseline Level Crossing Video. The project aims to improve the recording of level crossing safety data by developing an intelligent system capable of detecting near-miss incidents and capturing quantitative data around these incidents. To detect near-miss events at railway level crossings a video analytics module is being developed to analyse video footage obtained from forward-facing cameras installed on trains. This paper presents a vision base approach for the detection of these near-miss events. The video analytics module is comprised of object detectors and a rail detection algorithm, allowing the distance between a detected object and the rail to be determined. An existing publicly available Histograms of Oriented Gradients (HOG) based object detector algorithm is used to detect various types of vehicles in each video frame. As vehicles are usually seen from a sideway view from the cabin’s perspective, the results of the vehicle detector are verified using an algorithm that can detect the wheels of each detected vehicle. Rail detection is facilitated using a projective transformation of the video, such that the forward-facing view becomes a bird’s eye view. Line Segment Detector is employed as the feature extractor and a sliding window approach is developed to track a pair of rails. Localisation of the vehicles is done by projecting the results of the vehicle and rail detectors on the ground plane allowing the distance between the vehicle and rail to be calculated. The resultant vehicle positions and distance are logged to a database for further analysis. We present preliminary results regarding the performance of a prototype video analytics module on a data set of videos containing more than 30 different railway level crossings. The video data is captured from a journey of a train that has passed through these level crossings.
Resumo:
The aim of this study was to examine whether takeaway food consumption mediated (explained) the association between socioeconomic position and body mass index (BMI). A postal-survey was conducted among 1500 randomly selected adults aged between 25 and 64 years in Brisbane, Australia during 2009 (response rate 63.7%, N=903). BMI was calculated using self-reported weight and height. Participants reported usual takeaway food consumption, and these takeaway items were categorised into "healthy" and "less healthy" choices. Socioeconomic position was ascertained by education, household income, and occupation. The mean BMI was 27.1kg/m(2) for men and 25.7kg/m(2) for women. Among men, none of the socioeconomic measures were associated with BMI. In contrast, women with diploma/vocational education (β=2.12) and high school only (β=2.60), and those who were white-collar (β=1.55) and blue-collar employees (β=2.83) had significantly greater BMI compared with their more advantaged counterparts. However, household income was not associated with BMI. Among women, the consumption of "less healthy" takeaway food mediated BMI differences between the least and most educated, and between those employed in blue collar occupations and their higher status counterparts. Decreasing the consumption of "less healthy" takeaway options may reduce socioeconomic inequalities in overweight and obesity among women but not men.
Resumo:
Load bearing LSF walls are commonly made of cold-formed steel frames, gypsum plasterboards and insulation, and their fire performance is an important aspect of design. Many experimental and numerical studies have been conducted on the fire performance of LSF walls at the Queensland University of Technology (QUT). These studies have shown that increasing the number or thickness or quality of gypsum plasterboards has improved the fire resistance ratings (FRR) of LSF walls while the use of cavity insulation has reduced their FRR. Therefore new LSF wall systems with external insulation sandwiched between two layers of plasterboards were proposed, which provided higher FRR than cavity insulated walls. There are also other parameters that can improve the fire performance of LSF walls such as the steel type, stud geometry and depth, type of screw fasteners used, joints in the plasterboard and the plasterboard fall off time. This paper presents a review of the fire performance of LSF walls as a function of these parameters based on our research at QUT. Their effects on both the thermal and structural performance of LSF walls are discussed in detail and suitable improvements are recommended, for example, improved plasterboard joint types.
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls are commonly made of conventional lipped channel sections and gypsum plasterboards. Recently, innovative steel sections such as hollow flange channel sections have been proposed as studs in LSF wall frames with a view to improve their fire resistance ratings. A series of full scale fire tests was then undertaken to investigate the fire performance of the new LSF wall systems under standard fire conditions. Test wall frames made of hollow flange section studs were lined with fire resistant gypsum plasterboards on both sides, and were subjected to increasing temperatures as given by the standard fire curve on one side. Both uninsulated and cavity insulated walls were tested with varying load ratios from 0.2 to 0.6. This paper presents the details of this experimental study on the fire performance of LSF walls and the results. Test results showed that the walls made of the new hollow flange channel section studs have a superior fire performance in comparison to that of lipped channel section stud walls. They also showed that the fire performance of cavity insulated walls was inferior to that of uninsulated walls. The reasons for this fire behaviour are described in this paper.
Resumo:
By presenting the past as a repository of the characteristics of urban formation, urban morphology utilizes a knowledge platform as the basis for interpretation of accordant architectural responses (Levy, 1999). Operating within this framework at the scale of architectural features of individual buildings, and imbued with reference to the intrinsic architectural elements of both preceding and existing building forms, micro-morphology (Larkham, 2006, p. 126) provides the efficacy for new architecture that emerges from such a manner of composition...
Resumo:
The use of hierarchical Bayesian spatial models in the analysis of ecological data is increasingly prevalent. The implementation of these models has been heretofore limited to specifically written software that required extensive programming knowledge to create. The advent of WinBUGS provides access to Bayesian hierarchical models for those without the programming expertise to create their own models and allows for the more rapid implementation of new models and data analysis. This facility is demonstrated here using data collected by the Missouri Department of Conservation for the Missouri Turkey Hunting Survey of 1996. Three models are considered, the first uses the collected data to estimate the success rate for individual hunters at the county level and incorporates a conditional autoregressive (CAR) spatial effect. The second model builds upon the first by simultaneously estimating the success rate and harvest at the county level, while the third estimates the success rate and hunting pressure at the county level. These models are discussed in detail as well as their implementation in WinBUGS and the issues arising therein. Future areas of application for WinBUGS and the latest developments in WinBUGS are discussed as well.
Resumo:
The aim of this small-scale study was to measure, analyse and compare levels of acoustic noise, in a nine-bedded general intensive care unit (ICU). Measurements were undertaken using the Norsonic 116 sound level meter recording noise levels in the internationally agreed ‘A’ weighted scale. Noise level data were obtained and recorded at 5 min over 3 consecutive days. Results of noise level analysis indicated that mean noise levels within this clinical area was 56·42 dB(A), with acute spikes reaching 80 dB(A). The quietest noise level attained was that of 50 dB(A) during sporadic intervals throughout the 24-h period. Parametric testing using analysis of variance found a positive relationship (p ≤ 0·001) between the nursing shifts and the day of the week. However, Scheffe multiple range testing showed significant differences between the morning shift, and the afternoon and night shifts combined (p ≤ 0·05). There was no statistical difference between the afternoon and night shifts (p ≥ 0·05). While the results of this study may seem self-evident in many respects, what it has highlighted is that the problem of excessive noise exposure within the ICU continues to go unabated. More concerning is that the prolonged effects of excessive noise exposure on patients and staff alike can have deleterious effect on the health and well-being of these individuals.
Resumo:
Aims and objectives. This study was undertaken to measure and analyse levels of acoustic noise in a General Surgical Ward. Method. Measurements were undertaken using the Norsonic 116 sound level meter (SLM) recording noise levels in the internationally agreed ‘A’ weighted scale. Noise level data and observational data as to the number of staff present were obtained and recorded at 5-min intervals over three consecutive days. Results. Results of noise level analysis indicated that mean noise level within this clinical area was 42.28 dB with acute spikes reaching 70 dB(A). The lowest noise level attained was that of 36 dB(A) during the period midnight to 7 a.m. Non-parametric testing, using Spearman's Rho (two-tailed), found a positive relationship between the number of staff present and the level of noise recorded, indicating that the presence of hospital personnel strongly influences the level of noise within this area. Relevance to clinical practice. Whilst the results of this may seem self-evident in many respects the problems of excessive noise production and the exposure to it for patients, hospital personnel and relatives alike continues unabated. What must be of concern is the psychophysiological effects excessive noise exposure has on individuals, for example, decreased wound healing, sleep deprivation and cardiovascular stimulation.
Resumo:
Objectives: To establish injury rates among a population of elite athletes, to provide normative data for psychological variables hypothesised to be predictive of sport injuries, and to establish relations between measures of mood, perceived life stress, and injury characteristics as a precursor to introducing a psychological intervention to ameliorate the injury problem. Methods: As part of annual screening procedures, athletes at the Queensland Academy of Sport report medical and psychological status. Data from 845 screenings (433 female and 412 male athletes) were reviewed. Population specific tables of normative data were established for the Brunel mood scale and the perceived stress scale. Results: About 67% of athletes were injured each year, and about 18% were injured at the time of screening. Fifty percent of variance in stress scores could be predicted from mood scores, especially for vigour, depression, and tension. Mood and stress scores collectively had significant utility in predicting injury characteristics. Injury status (current, healed, no injury) was correctly classified with 39% accuracy, and back pain with 48% accuracy. Among a subset of 233 uninjured athletes (116 female and 117 male), five mood dimensions (anger, confusion, fatigue, tension, depression) were significantly related to orthopaedic incidents over the preceding 12 months, with each mood dimension explaining 6–7% of the variance. No sex differences in these relations were found. Conclusions: The findings support suggestions that psychological measures have utility in predicting athletic injury, although the relatively modest explained variance highlights the need to also include underlying physiological indicators of allostatic load, such as stress hormones, in predictive models.
Resumo:
Raman and infrared spectra of two well-defined fluellite samples, Al2(PO4)F2(OH)�7H2O, from the Krásno near Horní Slavkov (Czech Republic) and Kapunda, South Australia (Australia) were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of phosphate tetrahedra, aluminum oxide/hydroxide/fluoride octahedra, water molecules and hydroxyl ions. Approximate O–H���O hydrogen bond lengths were inferred from the Raman and infrared spectra.
Resumo:
Objectives: To examine factors associated with the uptake of i) long-acting reversible, ii) permanent and iii) traditional contraceptive methods among Australian women. Methods: Participants in the Australian Longitudinal Study on Women's Health born in 1973–78 reported on their contraceptive use at three surveys: 2003, 2006 and 2009. The participants were 5,849 women aged 25–30 in 2003 randomly sampled from Medicare. The main outcome measure was current contraceptive method at age 28–33 years categorised as long-acting reversible methods (implant, IUD, injection), permanent (tubal ligation, vasectomy), and traditional methods (oral contraceptive pills, condoms, withdrawal, safe period). Results: Compared to women living in major cities, women in inner regional areas were more likely to use long-acting (OR=1.26, 95%CI 1.03–1.55) or permanent methods (OR=1.43, 95%CI 1.17–1.76). Women living in outer regional/remote areas were more likely than women living in cities to use long-acting (OR=1.65, 95%CI 1.31–2.08) or permanent methods (OR=1.69, 95%CI 1.43–2.14). Conclusions: Location of residence is an important factor in women's choices about long-acting and permanent contraception in addition to the number and age of their children. Implications: Further research is needed to understand the role of geographical location in women's access to contraceptive options in Australia.
Resumo:
The Brain Research Institute (BRI) uses various types of indirect measurements, including EEG and fMRI, to understand and assess brain activity and function. As well as the recovery of generic information about brain function, research also focuses on the utilisation of such data and understanding to study the initiation, dynamics, spread and suppression of epileptic seizures. To assist with the future focussing of this aspect of their research, the BRI asked the MISG 2010 participants to examine how the available EEG and fMRI data and current knowledge about epilepsy should be analysed and interpreted to yield an enhanced understanding about brain activity occurring before, at commencement of, during, and after a seizure. Though the deliberations of the study group were wide ranging in terms of the related matters considered and discussed, considerable progress was made with the following three aspects. (1) The science behind brain activity investigations depends crucially on the quality of the analysis and interpretation of, as well as the recovery of information from, EEG and fMRI measurements. A number of specific methodologies were discussed and formalised, including independent component analysis, principal component analysis, profile monitoring and change point analysis (hidden Markov modelling, time series analysis, discontinuity identification). (2) Even though EEG measurements accurately and very sensitively record the onset of an epileptic event or seizure, they are, from the perspective of understanding the internal initiation and localisation, of limited utility. They only record neuronal activity in the cortical (surface layer) neurons of the brain, which is a direct reflection of the type of electrical activity they have been designed to record. Because fMRI records, through the monitoring of blood flow activity, the location of localised brain activity within the brain, the possibility of combining fMRI measurements with EEG, as a joint inversion activity, was discussed and examined in detail. (3) A major goal for the BRI is to improve understanding about ``when'' (at what time) an epileptic seizure actually commenced before it is identified on an eeg recording, ``where'' the source of this initiation is located in the brain, and ``what'' is the initiator. Because of the general agreement in the literature that, in one way or another, epileptic events and seizures represent abnormal synchronisations of localised and/or global brain activity the modelling of synchronisations was examined in some detail. References C. M. Michel, G. Thut, S. Morand, A. Khateb, A. J. Pegna, R. Grave de Peralta, S. Gonzalez, M. Seeck and T. Landis, Electric source imaging of human brain functions, Brain Res. Rev. , 36 (2--3), 2001, 108--118. doi:10.1016/S0165-0173(01)00086-8 S. Ogawa, R. S. Menon, S. G. Kim and K. Ugurbil, On the characteristics of functional magnetic resonance imaging of the brain, Annu. Rev. Bioph. Biom. , 27 , 1998, 447--474. doi:10.1146/annurev.biophys.27.1.447 C. D. Binnie and H. Stefan, Modern electroencephalography: its role in epilepsy management, Clin. Neurophysiol. , 110 (10), 1999, 1671--1697. doi:10.1016/S1388-2457(99)00125-X J. X. Tao, A. Ray, S. Hawes-Ebersole and J. S. Ebersole, Intracranial eeg substrates of scalp eeg interictal spikes, Epilepsia , 46 (5), 2005, 669--76. doi:10.1111/j.1528-1167.2005.11404.x S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle and K. Ugurbil, Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging, P. Natl. Acad. Sci. USA , 89 (13), 1992, 5951--5955. doi:10.1073/pnas.89.13.5951 J. Engel Jr., Report of the ilae classification core group, Epilepsia , 47 (9), 2006, 1558--1568. doi:10.1111/j.1528-1167.2006.00215.x L. Lemieux, A. Salek-Haddadi, O. Josephs, P. Allen, N. Toms, C. Scott, K. Krakow, R. Turner and D. R. Fish, Event-related fmri with simultaneous and continuous eeg: description of the method and initial case r port, NeuroImage , 14 (3), 2001, 780--7. doi:10.1006/nimg.2001.0853 P. Federico, D. F. Abbott, R. S. Briellmann, A. S. Harvey and G. D. Jackson, Functional mri of the pre-ictal state, Brain , 128 (8), 2005, 1811-7. doi:10.1093/brain/awh533 C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau and J. Gotman, bold changes occur prior to epileptic spikes seen on scalp eeg, NeuroImage , 35 (4), 2007, 1450--1458. doi:10.1016/j.neuroimage.2006.12.042 F. Moeller, H. R. Siebner, S. Wolff, H. Muhle, R. Boor, O. Granert, O. Jansen, U. Stephani and M. Siniatchkin, Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges, NeuroImage , 39 (4), 2008, 1839--1849. doi:10.1016/j.neuroimage.2007.10.058 V. Osharina, E. Ponchel, A. Aarabi, R. Grebe and F. Wallois, Local haemodynamic changes preceding interictal spikes: A simultaneous electrocorticography (ecog) and near-infrared spectroscopy (nirs) analysis in rats, NeuroImage , 50 (2), 2010, 600--607. doi:10.1016/j.neuroimage.2010.01.009 R. S. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee and J. Engel, Epileptic seizures and epilepsy: Definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe), Epilepsia , 46 (4), 2005, 470--472. doi:10.1111/j.0013-9580.2005.66104.x H. Berger, Electroencephalogram in humans, Arch. Psychiat. Nerven. , 87 , 1929, 527--570. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli and R. G. de Peralta, eeg source imaging, Clin. Neurophysiol. , 115 (10), 2004, 2195--2222. doi:10.1016/j.clinph.2004.06.001 P. L. Nunez and R. B. Silberstein, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of eeg with fmri make sense?, Brain Topogr. , 13 (2), 2000, 79--96. doi:10.1023/A:1026683200895 S. Ogawa, T. M. Lee, A. R. Kay and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, P. Natl. Acad. Sci. USA , 87 (24), 1990, 9868--9872. doi:10.1073/pnas.87.24.9868 J. S. Gati, R. S. Menon, K. Ugurbil and B. K. Rutt, Experimental determination of the bold field strength dependence in vessels and tissue, Magn. Reson. Med. , 38 (2), 1997, 296--302. doi:10.1002/mrm.1910380220 P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky and J. S. Hyde, Time course EPI of human brain function during task activation, Magn. Reson. Med. , 25 (2), 1992, 390--397. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppelm, M. S. Cohen and R. Turner, Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, P. Natl. Acad. Sci. USA , 89 (12), 1992, 5675--5679. doi:10.1073/pnas.89.12.5675 J. Frahm, K. D. Merboldt and W. Hnicke, Functional mri of human brain activation at high spatial resolution, Magn. Reson. Med. , 29 (1), 1993, 139--144. P. A. Bandettini, A. Jesmanowicz, E. C. Wong and J. S. Hyde, Processing strategies for time-course data sets in functional MRI of the human brain, Magn. Reson. Med. , 30 (2), 1993, 161--173. K. J. Friston, P. Jezzard and R. Turner, Analysis of functional MRI time-series, Hum. Brain Mapp. , 1 (2), 1994, 153--171. B. Biswal, F. Z. Yetkin, V. M. Haughton and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar mri, Mag. Reson. Med. , 34 (4), 1995, 537--541. doi:10.1002/mrm.1910340409 K. J. Friston, J. Ashburner, C. D. Frith, J. Poline, J. D. Heather and R. S. J. Frackowiak, Spatial registration and normalization of images, Hum. Brain Mapp. , 3 (3), 1995, 165--189. K. J. Friston, S. Williams, R. Howard, R. S. Frackowiak and R. Turner, Movement-related effects in fmri time-series, Magn. Reson. Med. , 35 (3), 1996, 346--355. G. H. Glover, T. Q. Li and D. Ress, Image-based method for retrospective correction of physiological motion effects in fmri: Retroicor, Magn. Reson. Med. , 44 (1), 2000, 162--167. doi:10.1002/1522-2594(200007)44:13.0.CO;2-E K. J. Friston, O. Josephs, G. Rees and R. Turner, Nonlinear event-related responses in fmri, Magn. Reson. Med. , 39 (1), 1998, 41--52. doi:10.1002/mrm.1910390109 K. Ugurbil, L. Toth and D. Kim, How accurate is magnetic resonance imaging of brain function?, Trends Neurosci. , 26 (2), 2003, 108--114. doi:10.1016/S0166-2236(02)00039-5 D. S. Kim, I. Ronen, C. Olman, S. G. Kim, K. Ugurbil and L. J. Toth, Spatial relationship between neuronal activity and bold functional mri, NeuroImage , 21 (3), 2004, 876--885. doi:10.1016/j.neuroimage.2003.10.018 A. Connelly, G. D. Jackson, R. S. Frackowiak, J. W. Belliveau, F. Vargha-Khadem and D. G. Gadian, Functional mapping of activated human primary cortex with a clinical mr imaging system, Radiology , 188 (1), 1993, 125--130. L. Allison, Hidden Markov Models, Technical Report , School of Computer and Software Engineering, Monash University, 2000. R. J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control, Appl. Math.-Czech. , 2004. B. Bhavnagri, Discontinuities of plane functions projected from a surface with methods for finding these , Technical Report, 2009. B. Bhavnagri, Computer Vision using Shape Spaces , Technical Report,1996, University of Adelaide. B. Bhavnagri, A method for representing shape based on an equivalence relation on polygons, Pattern Recogn. , 27 (2), 1994, 247--260. doi:10.1016/0031-3203(94)90057-4 D. F. Abbott, A. B. Waites, A. S. Harvey and G. D. Jackson, Exploring epileptic seizure onset with fmri, NeuroImage , 36(S1) (344TH-PM), 2007. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems, Science , 197 , 1977, 287--289. S. H. Strogatz, SYNC - The Emerging Science of Spontaneous Order , Theia, New York, 2003. J. W. Kim, J. A. Roberts and P. A. Robinson, Dynamics of epileptic seizures: Evolution, spreading, and suppression, J. Theor. Biol. , 257 (4), 2009, 527--532. doi:10.1016/j.jtbi.2008.12.009 Y. Kuramoto, T. Aoyagi, I. Nishikawa, T. Chawanya T and K. Okuda, Neural network model carrying phase information with application to collective dynamics, J. Theor. Phys. , 87 (5), 1992, 1119--1126. V. B. Mountcastle, The columnar organization of the neocortex, Brain , 120 (4), 1997, 701. doi:10.1093/brain/120.4.701 F. L. Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity, Epilepsia , 44 (12), 2003, 72--83. F. H. Lopes da Silva, W. Blanes, S. N. Kalitzin, J. Parra, P. Suffczynski and D. N. Velis, Dynamical diseases of brain systems: different routes to epileptic seizures, ieee T. Bio-Med. Eng. , 50 (5), 2003, 540. L.D. Iasemidis, Epileptic seizure prediction and control, ieee T. Bio-Med. Eng. , 50 (5), 2003, 549--558. L. D. Iasemidis, D. S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis, Adaptive epileptic seizure prediction system, ieee T. Bio-Med. Eng. , 50 (5), 2003, 616--627. K. Lehnertz, F. Mormann, T. Kreuz, R.G. Andrzejak, C. Rieke, P. David and C. E. Elger, Seizure prediction by nonlinear eeg analysis, ieee Eng. Med. Biol. , 22 (1), 2003, 57--63. doi:10.1109/MEMB.2003.1191451 K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C. Rieke, G. Widman and C. E. Elger, Nonlinear eeg analysis in epilepsy: Its possible use for interictal focus localization, seizure anticipation, and prevention, J. Clin. Neurophysiol. , 18 (3), 2001, 209. B. Litt and K. Lehnertz, Seizure prediction and the preseizure period, Curr. Opin. Neurol. , 15 (2), 2002, 173. doi:10.1097/00019052-200204000-00008 B. Litt and J. Echauz, Prediction of epileptic seizures, Lancet Neurol. , 1 (1), 2002, 22--30. doi:10.1016/S1474-4422(02)00003-0 M. M{a}kiranta, J. Ruohonen, K Suominen, J. Niinim{a}ki, E. Sonkaj{a}rvi, V. Kiviniemi, T. Sepp{a}nen, S. Alahuhta, V. J{a}ntti and O. Tervonen, {bold} signal increase preceeds eeg spike activity--a dynamic penicillin induced focal epilepsy in deep anesthesia, NeuroImage , 27 (4), 2005, 715--724. doi:10.1016/j.neuroimage.2005.05.025 K. Lehnertz, F. Mormann, H. Osterhage, A. M{u}ller, J. Prusseit, A. Chernihovskyi, M. Staniek, D. Krug, S. Bialonski and C. E. Elger, State-of-the-art of seizure prediction, J. Clin. Neurophysiol. , 24 (2), 2007, 147. doi:10.1097/WNP.0b013e3180336f16 F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E. Elger and K. Lehnertz, On the predictability of epileptic seizures, Clin. Neurophysiol. , 116 (3), 2005, 569--587. doi:10.1016/j.clinph.2004.08.025 F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road, Brain , 130 (2), 2007, 314--333. doi:10.1093/brain/awl241 Z. Rogowski, I. Gath and E. Bental, On the prediction of epileptic seizures, Biol. Cybern. , 42 (1), 1981, 9--15. Y. Salant, I. Gath, O. Henriksen, Prediction of epileptic seizures from two-channel eeg, Med. Biol. Eng. Comput. , 36 (5), 1998, 549--556. doi:10.1007/BF02524422 J. Gotman and D.J. Koffler, Interictal spiking increases after seizures but does not after decrease in medication, Evoked Potential , 72 (1), 1989, 7--15. J. Gotman and M. G. Marciani, Electroencephalographic spiking activity, drug levels, and seizure occurence in epileptic patients, Ann. Neurol. , 17 (6), 1985, 59--603. A. Katz, D. A. Marks, G. McCarthy and S. S. Spencer, Does interictal spiking change prior to seizures?, Electroen. Clin. Neuro. , 79 (2), 1991, 153--156. A. Granada, R. M. Hennig, B. Ronacher, A. Kramer and H. Herzel, Phase Response Curves: Elucidating the dynamics of couples oscillators, Method Enzymol. , 454 (A), 2009, 1--27. doi:10.1016/S0076-6879(08)03801-9 doi:10.1016/S0076-6879(08)03801-9 H. Kantz and T. Schreiber, Nonlinear time series analysis , 2004, Cambridge Univ Press. M. V. L. Bennett and R. S Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron , 41 (4), 2004, 495 --511. doi:10.1016/S0896-6273(04)00043-1 L.D. Iasemidis, J. Chris Sackellares, H. P. Zaveri and W. J. Williams, Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures, Brain Topogr. , 2 (3), 1990, 187--201. doi:10.1007/BF01140588 M. Le Van Quyen, J. Martinerie, V. Navarro, M. Baulac and F. J. Varela, Characterizing neurodynamic changes before seizures, J. Clin. Neurophysiol. , 18 (3), 2001, 191. J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault and F. J. Varela, Epileptic seizures can be anticipated by non-linear analysis, Nat. Med. , 4 (10), 1998, 1173--1176. doi:10.1038/2667 A. Pikovsky, M. Rosenblum, J. Kurths and R. C. Hilborn, Synchronization: A universal concept in nonlinear science, Amer. J. Phys. , 70 , 2002, 655. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. , 12 (1), 1972, 1--24. D. Cumin and C. P. Unsworth, Generalising the Kuramoto model for the study of neuronal synchronisation in the brain, Physica D , 226 (2), 2007, 181--196. doi:10.1016/j.physd.2006.12.004 F. K. Skinner, H. Bazzazi and S. A. Campbell, Two-cell to N-cell heterogeneous, inhibitory networks: Precise linking of multistable and coherent properties, J. Comput. Neurosci. , 18 (3), 2005, 343--352. doi:10.1007/s10827-005-0331-1 W. W. Lytton, Computer modelling of epilepsy, Nat. Rev. Neurosci. , 9 (8), 2008, 626--637. doi:10.1038/nrn2416 R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl and M. A. Whittington, Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Ann. Rev. , 2004. R. D. Traub, A. Draguhn, M. A. Whittington, T. Baldeweg, A. Bibbig, E. H. Buhl and D. Schmitz, Axonal gap junc ions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis., Rev. Neuroscience , 13 (1), 2002, 1. doi:10.1146/annurev.neuro.27.070203.144303 M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk and G. Sugihara, Early-warning signals for critical transitions, Nature , 461 (7260), 2009, 53--59. doi:10.1038/nature08227 K. Murphy, A Brief Introduction to Graphical Models and Bayesian Networks , 2008, http://www.cs.ubc.ca/murphyk/Bayes/bnintro.html . R. C. Bradley, An elementary
Resumo:
In this work, nanocrystalline Mg-Al-Nd alloys were fabricated using mechanical alloying method. Phase structure of the extrided rods was examined using X-ray diffraction (XRD) and the microstructures were observed using transmission electronic microscopy (TEM). High yield strength was obtained in the alloys with a high Nd content due to grain refinement and Nd rich precipitate phase.
Resumo:
Finite element method (FEM) relies on an approximate function to fit into a governing equation and minimizes the residual error in the integral sense in order to generate solutions for the boundary value problems (nodal solutions). Because of this FEM does not show simultaneous capacities for accurate displacement and force solutions at node and along an element, especially when under the element loads, which is of much ubiquity. If the displacement and force solutions are strictly confined to an element’s or member’s ends (nodal response), the structural safety along an element (member) is inevitably ignored, which can definitely hinder the design of a structure for both serviceability and ultimate limit states. Although the continuous element deflection and force solutions can be transformed into the discrete nodal solutions by mesh refinement of an element (member), this setback can also hinder the effective and efficient structural assessment as well as the whole-domain accuracy for structural safety of a structure. To this end, this paper presents an effective, robust, applicable and innovative approach to generate accurate nodal and element solutions in both fields of displacement and force, in which the salient and unique features embodies its versatility in applications for the structures to account for the accurate linear and second-order elastic displacement and force solutions along an element continuously as well as at its nodes. The significance of this paper is on shifting the nodal responses (robust global system analysis) into both nodal and element responses (sophisticated element formulation).