301 resultados para 710503 Tourism infrastructure development
Resumo:
Aligning the motivation of contractors and consultants to perform better than ‘business-as-usual’ (BAU) on a construction project is a complex undertaking and the costs of failure are high as misalignment can compromise project outcomes. Despite the potential benefits of effective alignment, there is still little information about optimally designing procurement approaches that promote motivation towards ‘above BAU’ goals. The paper contributes to this knowledge gap by examining the negative drivers of motivation in a major construction project that, despite a wide range of performance enhancing incentives, failed to exceed BAU performance. The paper provides a case study of an iconic infrastructure project undertaken in Australia between 2002 and 2004. It is shown that incentives provided to contractors and consultants to achieve above BAU performance can be compromised by a range of negative motivation drivers including: • inequitable contractual risk allocation; • late involvement of key stakeholders; • inconsistency between contract intentions and relationship intentions; • inadequate price negotiation; • inconsistency between the project performance goals and incentive goals; •unfair and inflexible incentive performance measurement processes. Future quantitative research is planned to determine the generalisability of these results.
Resumo:
Residents, businesses, local, state and national government stakeholders all want to have their say when airports expand or develop. While stakeholder engagement is increasingly a strategy employed for managing the tensions attracted to airport development, different stakeholders have different expectations and demands of airports. This requires different approaches to stakeholder engagement. Identifying the public values that are at stake in developing airports provides an initial step towards building a platform for selecting and applying stakeholder engagement strategies in airport and more general infrastructure contexts. -------- This paper uses the existing literature of public values to build a general typology of public values for the stakeholders of airport development. A range of semi-privatised and state owned airport case studies from Europe have been used to demonstrate the universal nature of the identified values. The result is a framework that identifies both the substantive and procedural values, separated into local, state/regional and national levels of interest. The typology provides a generalised view of public values in airport development; however, the public values identified may be limited to more western oriented societies due to the skew of airport cases reviewed. --------- Contributions are made to the literature with a typology of public values derived from existing knowledge and explored using empirical case examples. The provided typology enables research of airport development decision-making to delineate public values both within and between stakeholder groups, and helps to explain the different perspectives that stakeholders have towards airport development. Future research may focus on refining the typology for different types of airport governance structures, such as differences between public values in state and market-led airport development; include more airport cases from eastern societies to draw parallels or differences between western and eastern societies; or utilise the typology as a framework for analysing changes in public values of airports over time.
Resumo:
With increasing pressure to provide environmentally responsible infrastructure products and services, stakeholders are putting significant foci on the early identification of financial viability and outcome of infrastructure projects. Traditionally, there has been an imbalance between sustainable measures and project budget. On one hand, the industry tends to employ the first-cost mentality and approach to developing infrastructure projects. On the other, environmental experts and technology innovators often push for the ultimately green products and systems without much of a concern for cost. This situation is being quickly changed as the industry is under pressure to continue to return profit, while better adapting to current and emerging global issues of sustainability. For the infrastructure sector to contribute to sustainable development, it will need to increase value and efficiency. Thus, there is a great need for tools that will enable decision makers evaluate competing initiatives and identify the most sustainable approaches to procuring infrastructure projects. In order to ensure that these objectives are achieved, the concept of life-cycle costing analysis (LCCA) will play significant roles in the economics of an infrastructure project. Recently, a few research initiatives have applied the LCCA models for road infrastructure that focused on the traditional economics of a project. There is little coverage of life-cycle costing as a method to evaluate the criteria and assess the economic implications of pursuing sustainability in road infrastructure projects. To rectify this problem, this paper reviews the theoretical basis of previous LCCA models before discussing their inability to determinate the sustainability indicators in road infrastructure project. It then introduces an on-going research aimed at developing a new model to integrate the various new cost elements based on the sustainability indicators with the traditional and proven LCCA approach. It is expected that the research will generate a working model for sustainability based life-cycle cost analysis.
Resumo:
This is a preliminary scoping presentation. It outlines some of the very early issues identified this research topic.
Resumo:
Infrastructure organisations are operating in an increasingly challenging business environment as a result of globalisation, privatisation and deregulation. Under such circumstances, asset managers need to manage their infrastructure assets effectively in order to contribute to the overall performance of their organisation. In an external business environment that is constantly changing, extant literature on strategic management advocates a resourced--�]based view (RBV) approach that focuses on factors internal to the organisation such as resources and capabilities to sustain organisation performance. The aim of this study is to explore the core capabilities needed in the management of infrastructure assets. Using a multiple case study research strategy focusing on transport infrastructure, this research firstly examines the goals of infrastructure asset management and their alignment with broader corporate goals of an infrastructure organisation. It then examines the strategic infrastructure asset management processes that are needed to achieve these goals. The core capabilities that can support the strategic infrastructure asset management processes are then identified. This research produced a number of findings. First, it provided empirical evidence that asset management goals are being pursued with the aim of supporting the broader business goals of infrastructure organisations. Second, through synthesising the key asset management processes deemed necessary to achieve the asset management goals, a strategic infrastructure asset management model is proposed. Third, it identified five core capabilities namely stakeholder connectivity, cross-functional, relational, technology absorptive and integrated information management capability as central to executing the strategic infrastructure asset management processes well. These findings culminate in the development of a capability model to improve the performance of infrastructure assets.
Resumo:
Building for a sustainable environment requires sustainable infrastructure assets. Infrastructure capacity management is the process of ensuring optimal provision of such infrastructure assets. Effectiveness in this process will enable the infrastructure asset owners and its stakeholders to receive full value on their investment. Business research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With limited access to resources, the challenge for infrastructure organisations is to identify and develop core capabilities to enable infrastructure capacity management. This chapter explores the concept of capability and identifies the core capability needed in infrastructure capacity management. Through a case study of the Port of Brisbane, this chapter shows that infrastructure organisations must develop their intelligence gathering capability to effectively manage the capacity of their infrastructure assets.
Resumo:
The development of research data management infrastructure and services and making research data more discoverable and accessible to the research community is a key priority at the national, state and individual university level. This paper will discuss and reflect upon a collaborative project between Griffith University and the Queensland University of Technology to commission a Metadata Hub or Metadata Aggregation service based upon open source software components. It will describe the role that metadata aggregation services play in modern research infrastructure and argue that this role is a critical one.
Resumo:
Investment begins with imagining that doing something new in the present will lead to a better future. Investment can vary from incidental improvements as safe and beneficial side-effects of current activity through to a more dedicated and riskier disinvestment in current methods of operation and reinvestment in new processes and products. The role of government has an underlying continuity determined by its constitution that authorises a parliament to legislate for peace, order and good government. ‘Good government’ is usually interpreted as improving the living standards of its citizens. The requirements for social order and social cohesion suggest that improvements should be shared fairly by all citizens through all of their lives. Arguably, the need to maintain an individual’s metabolism has a social counterpart in the ‘collective metabolism’ of a sustainable and productive society.
Resumo:
Anecdotal evidence from the infrastructure and building sectors highlights issues of drugs and alcohol and its association with safety risk on construction sites. Operating machinery and mobile equipment, proximity to live traffic together with congested sites, electrical equipment and operating at heights conspire to accentuate the potential adverse impact of drugs and alcohol in the workplace. While most Australian jurisdictions have identified this as a critical safety issue, information is limited regarding the prevalence of alcohol and other drugs in the workplace and there is limited evidential guidance regarding how to effectively and efficiently address such an issue. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgement from drugs and alcohol. A nationally consistent collaborative approach across the construction workforce - involving employers and employees; clients; unions; contractors and sub-contractors is required to engender a cultural change in the construction workforce – in a similar manner to the on-going initiative in securing a cultural change to drink-driving in our society where peer intervention and support is encouraged. This study has four key objectives. Firstly, using the standard World Health Organisation AUDIT, a national qualitative and quantitative assessment of the use of drugs and alcohol will be carried out. This will build upon similar studies carried out in the Australian energy and mining sectors. Secondly, the development of an appropriate industry policy will adopt a non-punitive and rehabilitative approach developed in consultation with employers and employees across the infrastructure and building sectors, with the aim it be adopted nationally for adoption at the construction workplace. Thirdly, an industry-specific cultural change management program will be developed through a nationally collaborative approach to reducing the risk of impaired performance on construction sites and increasing workers’ commitment to drugs and alcohol safety. Finally, an implementation plan will be developed from data gathered from both managers and construction employees. Such an approach stands to benefit not only occupational health and safety, through a greater understanding of the safety impacts of alcohol and other drugs at work, but also alcohol and drug use as a wider community health issue. This paper will provide an overview of the background and significance of the study as well as outlining the proposed methodology that will be used to evaluate the safety impacts of alcohol and other drugs in the construction industry.
Resumo:
Purpose – The purpose of this paper is to develop a conceptual framework that can be used to identify capabilities needed in the management of infrastructure assets. Design/methodology/approach – This paper utilises a qualitative approach to analyse secondary data in order to develop a conceptual framework that identifies capabilities for strategic infrastructure asset management. Findings – In an external business environment that is undergoing rapid change, it is more appropriate to focus on factors internal to the organisation such as resources and capabilities as a basis to develop competitive advantage. However, there is currently very little understanding of the internal capabilities that are appropriate for infrastructure asset management. Therefore, a conceptual framework is needful to guide infrastructure organisations in the identification of capabilities. Research limitations/implications – This is a conceptual paper and future empirical research should be conducted to validate the propositions made in the paper. Practical implications – The paper clearly argues the need for infrastructure organisations to adopt a systematic approach to identifying the capabilities needed in the management of strategic infrastructure assets. The discussion on the impact of essential capabilities is useful in providing the impetus for managers who operate in a deregulated infrastructure business landscape to review their existing strategies. Originality/value – The paper provides a new perspective on how asset managers can create value for their organisations by investing in the relevant capabilities.
Resumo:
Physical infrastructure assets are important components of our society and our economy. They are usually designed to last for many years, are expected to be heavily used during their lifetime, carry considerable load, and are exposed to the natural environment. They are also normally major structures, and therefore present a heavy investment, requiring constant management over their life cycle to ensure that they perform as required by their owners and users. Given a complex and varied infrastructure life cycle, constraints on available resources, and continuing requirements for effectiveness and efficiency, good management of infrastructure is important. While there is often no one best management approach, the choice of options is improved by better identification and analysis of the issues, by the ability to prioritise objectives, and by a scientific approach to the analysis process. The abilities to better understand the effect of inputs in the infrastructure life cycle on results, to minimise uncertainty, and to better evaluate the effect of decisions in a complex environment, are important in allocating scarce resources and making sound decisions. Through the development of an infrastructure management modelling and analysis methodology, this thesis provides a process that assists the infrastructure manager in the analysis, prioritisation and decision making process. This is achieved through the use of practical, relatively simple tools, integrated in a modular flexible framework that aims to provide an understanding of the interactions and issues in the infrastructure management process. The methodology uses a combination of flowcharting and analysis techniques. It first charts the infrastructure management process and its underlying infrastructure life cycle through the time interaction diagram, a graphical flowcharting methodology that is an extension of methodologies for modelling data flows in information systems. This process divides the infrastructure management process over time into self contained modules that are based on a particular set of activities, the information flows between which are defined by the interfaces and relationships between them. The modular approach also permits more detailed analysis, or aggregation, as the case may be. It also forms the basis of ext~nding the infrastructure modelling and analysis process to infrastructure networks, through using individual infrastructure assets and their related projects as the basis of the network analysis process. It is recognised that the infrastructure manager is required to meet, and balance, a number of different objectives, and therefore a number of high level outcome goals for the infrastructure management process have been developed, based on common purpose or measurement scales. These goals form the basis of classifYing the larger set of multiple objectives for analysis purposes. A two stage approach that rationalises then weights objectives, using a paired comparison process, ensures that the objectives required to be met are both kept to the minimum number required and are fairly weighted. Qualitative variables are incorporated into the weighting and scoring process, utility functions being proposed where there is risk, or a trade-off situation applies. Variability is considered important in the infrastructure life cycle, the approach used being based on analytical principles but incorporating randomness in variables where required. The modular design of the process permits alternative processes to be used within particular modules, if this is considered a more appropriate way of analysis, provided boundary conditions and requirements for linkages to other modules, are met. Development and use of the methodology has highlighted a number of infrastructure life cycle issues, including data and information aspects, and consequences of change over the life cycle, as well as variability and the other matters discussed above. It has also highlighted the requirement to use judgment where required, and for organisations that own and manage infrastructure to retain intellectual knowledge regarding that infrastructure. It is considered that the methodology discussed in this thesis, which to the author's knowledge has not been developed elsewhere, may be used for the analysis of alternatives, planning, prioritisation of a number of projects, and identification of the principal issues in the infrastructure life cycle.
Resumo:
Purpose, Design/methodology / approach The acknowledgement of state significance in relation to development projects can result in special treatment by regulatory authorities, particularly in terms of environmental compliance and certain economic and other government support measures. However, defining just what constitutes a “significant project”, or a project of “state significance”, varies considerably between Australian states. In terms of establishing threshold levels, in Queensland there is even less clarity. Despite this lack of definition, the implications of “state significance” can nevertheless be considerable. For example, in Queensland if the Coordinator-General declares a project to be a “significant project” under the State Development and Public Works Organisation Act 1971, the environmental impact assessment process may become more streamlined – potentially circumventing certain provisions under The Integrated Planning Act 1997. If the project is not large enough to be so deemed, an extractive resource under the State Planning Policy 2/07 - Protection of Extractive Resources 2007 may be considered to be of State or regional significance and subsequently designated as a “Key Resource Area”. As a consequence, such a project is afforded some measure of resource protection but remains subject to the normal assessment process under the Integrated Development Assessment System, as well as the usual requirements of the vegetation management codes, and other regulations. Findings (Originality/value) & Research limitations / implications This paper explores the various meanings of “state significance” in Queensland and the ramifications for development projects in that state. It argues for a streamlining of the assessment process in order to avoid or minimise constraints acting on the state’s development. In so doing, it questions the existence of a strategic threat to the delivery of an already over-stretched infrastructure program.
Resumo:
The concept of asset management is not a new but an evolving idea that has been attracting attention of many organisations operating and/or owning some kind of infrastructure assets. The term asset management have been used widely with fundamental differences in interpretation and usage. Regardless of the context of the usage of the term, asset management implies the process of optimising return by scrutinising performance and making key strategic decisions throughout all phases of an assets lifecycle (Sarfi and Tao, 2004). Hence, asset management is a philosophy and discipline through which organisations are enabled to more effectively deploy their resources to provide higher levels of customer service and reliability while balancing financial objectives. In Australia, asset management made its way into the public works in 1993 when the Australian Accounting Standard Board issued the Australian Accounting Standard 27 – AAS27. Standard AAS27 required government agencies to capitalise and depreciate assets rather than expense them against earnings. This development has indirectly forced organisations managing infrastructure assets to consider the useful life and cost effectiveness of asset investments. The Australian State Treasuries and the Australian National Audit Office was the first organisation to formalise the concepts and principles of asset management in Australia in which they defined asset management as “ a systematic, structured process covering the whole life of an asset”(Australian National Audit Office, 1996). This initiative led other Government bodies and industry sectors to develop, refine and apply the concept of asset management in the management of their respective infrastructure assets. Hence, it can be argued that the concept of asset management has emerged as a separate and recognised field of management during the late 1990s. In comparison to other disciplines such as construction, facilities, maintenance, project management, economics, finance, to name a few, asset management is a relatively new discipline and is clearly a contemporary topic. The primary contributors to the literature in asset management are largely government organisations and industry practitioners. These contributions take the form of guidelines and reports on the best practice of asset management. More recently, some of these best practices have been made to become a standard such as the PAS 55 (IAM, 2004, IAM, 2008b) in UK. As such, current literature in this field tends to lack well-grounded theories. To-date, while receiving relatively more interest and attention from empirical researchers, the advancement of this field, particularly in terms of the volume of academic and theoretical development is at best moderate. A plausible reason for the lack of advancement is that many researchers and practitioners are still unaware of, or unimpressed by, the contribution that asset management can make to the performance of infrastructure asset. This paper seeks to explore the practices of organisations that manage infrastructure assets to develop a framework of strategic infrastructure asset management processes. It will begin by examining the development of asset management. This is followed by the discussion on the method to be adopted for this paper. Next, is the discussion of the result form case studies. It first describes the goals of infrastructure asset management and how they can support the broader business goals. Following this, a set of core processes that can support the achievement of business goals are provided. These core processes are synthesised based on the practices of asset managers in the case study organisations.
Resumo:
Most infrastructure project developments are complex in nature, particularly in the planning phase. During this stage, many vague alternatives are tabled - from the strategic to operational level. Human judgement and decision making are characterised by biases, errors and the use of heuristics. These factors are intangible and hard to measure because they are subjective and qualitative in nature. The problem with human judgement becomes more complex when a group of people are involved. The variety of different stakeholders may cause conflict due to differences in personal judgements. Hence, the available alternatives increase the complexities of the decision making process. Therefore, it is desirable to find ways of enhancing the efficiency of decision making to avoid misunderstandings and conflict within organisations. As a result, numerous attempts have been made to solve problems in this area by leveraging technologies such as decision support systems. However, most construction project management decision support systems only concentrate on model development and neglect fundamentals of computing such as requirement engineering, data communication, data management and human centred computing. Thus, decision support systems are complicated and are less efficient in supporting the decision making of project team members. It is desirable for decision support systems to be simpler, to provide a better collaborative platform, to allow for efficient data manipulation, and to adequately reflect user needs. In this chapter, a framework for a more desirable decision support system environment is presented. Some key issues related to decision support system implementation are also described.
Resumo:
Organisations owning and managing infrastructure asset are constantly striving to obtain the greatest lifetime value from their infrastructure assets. Many such organisations have adopted the concept of “asset management” with the aim of improving the performance of their infrastructure assets. This paper evaluates the adoption of asset management to improve performance in the context of organisations managing infrastructure assets. Relevant previous research studies on main barriers to the adoption of asset management are reviewed. Analysis of these findings, together with deductive reasoning, leads to the development of the proposed improvement strategies. Three issues were identified as barrier to the advancement of the concept of asset management. They are (1) lack of recognition, (2) fragmentation; and (3) growing complexity. To overcome these issues, this paper suggests that the organisations manage infrastructure assets must (1) adopt a more strategic approach in the management of infrastructure assets, (2) develop a framework of strategic infrastructure asset management processes, and (3) identify the core capabilities needed in the management of infrastructure assets. This paper presents the direction for further research to advance the concept of asset management in the management of infrastructure asset.