276 resultados para 030000 CHEMICAL SCIENCE


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deposition of biological material (biofouling) onto polymeric contact lenses is thought to be a major contributor to lens discomfort and hence discontinuation of wear. We describe a method to characterize lipid deposits directly from worn contact lenses utilizing liquid extraction surface analysis coupled to tandem mass spectrometry (LESA-MS/MS). This technique effected facile and reproducible extraction of lipids from the contact lens surfaces and identified lipid molecular species representing all major classes present in human tear film. Our data show that LESA-MS/MS is a rapid and comprehensive technique for the characterization of lipid-related biofouling on polymer surfaces.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV-vis photodissociation action spectroscopy is becoming increasingly prevalent because of advances in, and commercial availability of, ion trapping technologies and tunable laser sources. This study outlines in detail an instrumental arrangement, combining a commercial ion-trap mass spectrometer and tunable nanosecond pulsed laser source, for performing fully automated photodissociation action spectroscopy on gas-phase ions. The components of the instrumentation are outlined, including the optical and electronic interfacing, in addition to the control software for automating the experiment and performing online analysis of the spectra. To demonstrate the utility of this ensemble, the photodissociation action spectra of 4-chloroanilinium, 4-bromoanilinium, and 4-iodoanilinium cations are presented and discussed. Multiple photoproducts are detected in each case and the photoproduct yields are followed as a function of laser wavelength. It is shown that the wavelength-dependent partitioning of the halide loss, H loss, and NH3 loss channels can be broadly rationalized in terms of the relative carbon-halide bond dissociation energies and processes of energy redistribution. The photodissociation action spectrum of (phenyl)Ag-2 (+) is compared with a literature spectrum as a further benchmark.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultraviolet photodissociation of gas-phase N-methylpyridinium ions is studied at room temperature using laser photodissociation mass spectrometry and structurally diagnostic ion-molecule reaction kinetics. The C5H5N-CH3+ (m/z 94), C5H5N-CD3+ (m/z 97), and C5D5N-CH3+(m/z 99) isotopologues are investigated, and it is shown that the N-methylpyridinium ion photodissociates by the loss of methane in the 36 000 - 43 000 cm(-1) (280 - 230 nm) region. The dissociation likely occurs on the ground state surface following internal conversion from the SI state. For each isotopologue, by monitoring the photofragmentation yield as a function of photon wavenumber, a broad vibronically featured band is recorded with origin (0-0) transitions assigned at 38 130, 38 140 and 38 320 cm(-1) for C5H5N-CH3+ C5H5N-CD3+ and C5D5N-CH3+, respectively. With the aid of quantum chemical calculations (CASSCF(6,6)/aug-cc-pVDZ), most of the observed vibronic detail is assigned to two in-plane ring deformation modes. Finally, using ion-molecule reactions, the methane coproduct at m/z 78 is confirmed as a 2-pyridinylium ion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen dioxide is used as a "radical scavenger" to probe the position of carbon-centered radicals within complex radical ions in the gas phase. As with analogous neutral radical reactions, this addition results in formation of an \[M + NO2](+) adduct, but the structural identity of this species remains ambiguous. Specifically, the question remains: do such adducts have a nitro-(RNO2) or nitrosoxy-(RONO) moiety, or are both isomers present in the adduct population? In order to elucidate the products of such reactions, we have prepared and isolated three distonic phenyl radical cations and observed their reactions with nitrogen dioxide in the gas phase by ion-trap mass spectrometry. In each case, stabilized \[M + NO2](+) adduct ions are observed and isolated. The structure of these adducts is probed by collision-induced dissociation and ultraviolet photodissociation action spectroscopy and a comparison made to the analogous spectra of authentic nitro-and nitrosoxy-benzenes. We demonstrate unequivocally that for the phenyl radical cations studied here, all stabilized \[M + NO2](+) adducts are exclusively nitrobenzenes. Electronic structure calculations support these mass spectrometric observations and suggest that, under low-pressure conditions, the nitrosoxy-isomer is unlikely to be isolated from the reaction of an alkyl or aryl radical with NO2. The combined experimental and theoretical results lead to the prediction that stabilization of the nitrosoxy-isomer will only be possible for systems wherein the energy required for dissociation of the RO-NO bond (or other low energy fragmentation channels) rises close to, or above, the energy of the separated reactants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural investigations of large biomolecules in the gas phase are challenging. Herein, it is reported that action spectroscopy taking advantage of facile carbon-iodine bond dissociation can be used to examine the structures of large molecules, including whole proteins. Iodotyrosine serves as the active chromophore, which yields distinctive spectra depending on the solvation of the side chain by the remainder of the molecule. Isolation of the chromophore yields a double featured peak at ∼290 nm, which becomes a single peak with increasing solvation. Deprotonation of the side chain also leads to reduced apparent intensity and broadening of the action spectrum. The method can be successfully applied to both negatively and positively charged ions in various charge states, although electron detachment becomes a competitive channel for multiply charged anions. In all other cases, loss of iodine is by far the dominant channel which leads to high sensitivity and simple data analysis. The action spectra for iodotyrosine, the iodinated peptides KGYDAKA, DAYLDAG, and the small protein ubiquitin are reported in various charge states. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much of what we currently understand about the structure and energetics of multiply charged anions in the gas phase is derived from the measurement of photoelectron spectra of simple dicarboxylate dianions. Here we have employed a modified linear ion-trap mass spectrometer to undertake complementary investigations of the ionic products resulting from laser-initiated electron photodetachment of two model dianions. Electron photodetachment (ePD) of the \[M-2H](2-) dianions formed from glutaric and adipic acid were found to result in a significant loss of ion signal overall, which is consistent with photoelectron studies that report the emission of slow secondary electrons (Xing et al., 2010 \[201). The ePD mass spectra reveal no signals corresponding to the intact \[M-2H](center dot-) radical anions, but rather \[M-2H-CO2](center dot-) ions are identified as the only abundant ionic products indicating that spontaneous decarboxylation follows ejection of the first electron. Interestingly however, investigations of the structure and energetics of the \[M-2H-CO2](center dot-) photoproducts by ion-molecule reaction and electronic structure calculation indicate that (i) these ions are stable with respect to secondary electron detachment and (ii) most of the ion population retains a distonic radical anion structure where the radical remains localised at the position of the departed carboxylate moiety. These observations lead to the conclusion that the mechanism for loss of ion signal involves unimolecular rearrangement reactions of the nascent \[M-2H](center dot-) carbonyloxyl radical anions that compete favourably with direct decarboxylation. Several possible rearrangement pathways that facilitate electron detachment from the radical anion are identified and are computed to be energetically accessible. Such pathways provide an explanation for prior observations of slow secondary electron features in the photoelectron spectra of the same dicaboxylate dianions. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of the aromatic distonic peroxyl radical cations N-methyl pyridinium-4-peroxyl (PyrOO center dot+) and 4-(N,N,N-trimethyl ammonium)-phenyl peroxyl (AnOO center dot+), with symmetrical dialkyl alkynes 10?ac was studied in the gas phase by mass spectrometry. PyrOO center dot+ and AnOO center dot+ were produced through reaction of the respective distonic aryl radical cations Pyr center dot+ and An center dot+ with oxygen, O2. For the reaction of Pyr center dot+ with O2 an absolute rate coefficient of k1=7.1X10-12 cm3 molecule-1 s-1 and a collision efficiency of 1.2?% was determined at 298 K. The strongly electrophilic PyrOO center dot+ reacts with 3-hexyne and 4-octyne with absolute rate coefficients of khexyne=1.5X10-10 cm3 molecule-1 s-1 and koctyne=2.8X10-10 cm3 molecule-1 s-1, respectively, at 298 K. The reaction of both PyrOO center dot+ and AnOO center dot+ proceeds by radical addition to the alkyne, whereas propargylic hydrogen abstraction was observed as a very minor pathway only in the reactions involving PyrOO center dot+. A major reaction pathway of the vinyl radicals 11 formed upon PyrOO center dot+ addition to the alkynes involves gamma-fragmentation of the peroxy O?O bond and formation of PyrO center dot+. The PyrO center dot+ is rapidly trapped by intermolecular hydrogen abstraction, presumably from a propargylic methylene group in the alkyne. The reaction of the less electrophilic AnOO center dot+ with alkynes is considerably slower and resulted in formation of AnO center dot+ as the only charged product. These findings suggest that electrophilic aromatic peroxyl radicals act as oxygen atom donors, which can be used to generate alpha-oxo carbenes 13 (or isomeric species) from alkynes in a single step. Besides gamma-fragmentation, a number of competing unimolecular dissociative reactions also occur in vinyl radicals 11. The potential energy diagrams of these reactions were explored with density functional theory and ab initio methods, which enabled identification of the chemical structures of the most important products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radical-directed dissociation of gas phase ions is emerging as a powerful and complementary alternative to traditional tandem mass spectrometric techniques for biomolecular structural analysis. Previous studies have identified that coupling of 2-[(2,2,6,6-tetramethylpiperidin-1-oxyl)methyl] benzoic acid (TEMPO-Bz) to the N-terminus of a peptide introduces a labile oxygen-carbon bond that can be selectively activated upon collisional activation to produce a radical ion. Here we demonstrate that structurally-defined peptide radical ions can also be generated upon UV laser photodissociation of the same TEMPO-Bz derivatives in a linear ion-trap mass spectrometer. When subjected to further mass spectrometric analyses, the radical ions formed by a single laser pulse undergo identical dissociations as those formed by collisional activation of the same precursor ion, and can thus be used to derive molecular structure. Mapping the initial radical formation process as a function of photon energy by photodissociation action spectroscopy reveals that photoproduct formation is selective but occurs only in modest yield across the wavelength range (300-220 nm), with the photoproduct yield maximised between 235 and 225 nm. Based on the analysis of a set of model compounds, structural modifications to the TEMPO-Bz derivative are suggested to optimise radical photoproduct yield. Future development of such probes offers the advantage of increased sensitivity and selectivity for radical-directed dissociation. © 2014 the Owner Societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paint Spray is developed as a direct sampling ionisation method for mass spectrometric analysis of additives in polymer-based surface coatings. The technique simply involves applying an external high voltage (5 kV) to the wetted sample placed in front of the mass spectrometer inlet and represents a much simpler ionisation technique compared to those currently available. The capabilities of Paint Spray are demonstrated herein with the detection of four commercially available hindered amine light stabilisers; TINUVIN® 770, TINUVIN® 292, TINUVIN® 123 and TINUVIN® 152 directly from thermoset polyester-based coil coatings. Paint Spray requires no sample preparation or pre-treatment and combined with its simplicity - requiring no specialised equipment - makes it ideal for use by non-specialists. The application of Paint Spray for industrial use has significant potential as sample collection from a coil coating production line and Paint Spray ionisation could enable fast quality control screening at high sensitivity.