109 resultados para vector error correction model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents an innovative approach to modelling the causal relationships of human errors in rail crack incidents (RCI) from a managerial perspective. A Bayesian belief network is developed to model RCI by considering the human errors of designers, manufactures, operators and maintainers (DMOM) and the causal relationships involved. A set of dependent variables whose combinations express the relevant functions performed by each DMOM participant is used to model the causal relationships. A total of 14 RCI on Hong Kong’s mass transit railway (MTR) from 2008 to 2011 are used to illustrate the application of the model. Bayesian inference is used to conduct an importance analysis to assess the impact of the participants’ errors. Sensitivity analysis is then employed to gauge the effect the increased probability of occurrence of human errors on RCI. Finally, strategies for human error identification and mitigation of RCI are proposed. The identification of ability of maintainer in the case study as the most important factor influencing the probability of RCI implies the priority need to strengthen the maintenance management of the MTR system and that improving the inspection ability of the maintainer is likely to be an effective strategy for RCI risk mitigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Birds represent the most diverse extant tetrapod clade, with ca. 10,000 extant species, and the timing of the crown avian radiation remains hotly debated. The fossil record supports a primarily Cenozoic radiation of crown birds, whereas molecular divergence dating analyses generally imply that this radiation was well underway during the Cretaceous. Furthermore, substantial differences have been noted between published divergence estimates. These have been variously attributed to clock model, calibration regime, and gene type. One underappreciated phenomenon is that disparity between fossil ages and molecular dates tends to be proportionally greater for shallower nodes in the avian Tree of Life. Here, we explore potential drivers of disparity in avian divergence dates through a set of analyses applying various calibration strategies and coding methods to a mitochondrial genome dataset and an 18-gene nuclear dataset, both sampled across 72 taxa. Our analyses support the occurrence of two deep divergences (i.e., the Palaeognathae/Neognathae split and the Galloanserae/Neoaves split) well within the Cretaceous, followed by a rapid radiation of Neoaves near the K-Pg boundary. However, 95% highest posterior density intervals for most basal divergences in Neoaves cross the boundary, and we emphasize that, barring unreasonably strict prior distributions, distinguishing between a rapid Early Paleocene radiation and a Late Cretaceous radiation may be beyond the resolving power of currently favored divergence dating methods. In contrast to recent observations for placental mammals, constraining all divergences within Neoaves to occur in the Cenozoic does not result in unreasonably high inferred substitution rates. Comparisons of nuclear DNA (nDNA) versus mitochondrial DNA (mtDNA) datasets and NT- versus RY-coded mitochondrial data reveal patterns of disparity that are consistent with substitution model misspecifications that result in tree compression/tree extension artifacts, which may explain some discordance between previous divergence estimates based on different sequence types. Comparisons of fully calibrated and nominally calibrated trees support a correlation between body mass and apparent dating error. Overall, our results are consistent with (but do not require) a Paleogene radiation for most major clades of crown birds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the challenges of flood mapping using multispectral images. Quantitative flood mapping is critical for flood damage assessment and management. Remote sensing images obtained from various satellite or airborne sensors provide valuable data for this application, from which the information on the extent of flood can be extracted. However the great challenge involved in the data interpretation is to achieve more reliable flood extent mapping including both the fully inundated areas and the 'wet' areas where trees and houses are partly covered by water. This is a typical combined pure pixel and mixed pixel problem. In this paper, an extended Support Vector Machines method for spectral unmixing developed recently has been applied to generate an integrated map showing both pure pixels (fully inundated areas) and mixed pixels (trees and houses partly covered by water). The outputs were compared with the conventional mean based linear spectral mixture model, and better performance was demonstrated with a subset of Landsat ETM+ data recorded at the Daly River Basin, NT, Australia, on 3rd March, 2008, after a flood event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.