158 resultados para stromal abscess
Resumo:
Ovarian cancer, in particular epithelial ovarian cancer (EOC), is commonly diagnosed when the tumor has metastasized into the abdominal cavity with an accumulation of ascites fluid. Combining histopathology and genetic variations, EOC can be sub-grouped into Type-I and Type-II tumors, of which the latter are more aggressive and metastatic. Metastasis and chemoresistance are the key events associated with the tumor microenvironment that lead to a poor patient outcome. Kallikrein-related peptidases (KLKs) are aberrantly expressed in EOC, in particular, in the more metastatic Type-II tumors. KLKs are a family of 15 serine proteases that are expressed in diverse human tissues and involved in various patho-physiological processes. As extracellular enzymes, KLKs function in the hydrolysis of growth factors, proteases, cell membrane bound receptors, adhesion proteins, and cytokines initiating intracellular signaling pathways and their downstream events. High KLK levels are differentially associated with the prognosis of ovarian cancer patients, suggesting that they not only have application as biomarkers but also function in disease progression, and therefore are potential therapeutic targets. Recent studies have demonstrated the function of these proteases in promoting and/or suppressing the invasive behavior of ovarian cancer cells in metastasis in vitro and in vivo. Both conventional cell culture methods and three-dimensional platforms have been applied to mimic the ovarian cancer microenvironment of patients, such as the solid stromal matrix and ascites fluid. Here we summarize published studies to provide an overview of our understanding of the role of KLKs in EOC, and to lay the foundation for future research directions.
Resumo:
PROBLEM Estradiol regulates chemokine secretion from uterine epithelial cells, but little is known about estradiol regulation in vivo or the role of estrogen receptors (ERs). METHOD CCL20 and CXCL1 present in reproductive washes following treatment with selective estrogen receptor modulators (SERMs) were compared with that during estrous and following estradiol-treated ovariectomized BALB/c mice. Cellular regulation was determined using isolated vaginal and uterine epithelial/stromal cells in vitro. RESULTS Uterine and vaginal chemokine secretion is cyclically regulated with CCL20 at low levels but CXCL1 at high levels during high estradiol, generally mimicking estradiol effect in vivo. ERα but not ERβ regulated CCL20/CXCL1 secretion by uterine epithelial cells in vitro and vaginal CCL20 in vivo. Estradiol/SERMs failed to alter uterine CCL20 secretion in ovariectomized mice. Diminished uterine epithelial ERα staining following ovariectomy corresponded with estradiol unresponsiveness of uterine tissue. CONCLUSION Estrogen receptors α regulates CCL20/CXCL1 secretion in the female reproductive tract, and ERα antagonists directly oppose the regulation by estradiol. Understanding ER-mediated antimicrobial chemokine expression is important to elucidate cyclic susceptibility to sexually transmitted pathogens.
Resumo:
This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.
Resumo:
Oxygen has been the “holy grail” of contact lens wear for over 100 years, but it is just one piece of a complex jigsaw puzzle. Clearly, high oxygen transmissibility (Dk/t) silicone hydrogel lenses meet the oxygen needs of the cornea. The Dk/t of these lenses is over 75 Dk units, which is far above that of the “best” hydrogel lenses (30 Dk units). Clinical trials have failed to reveal any hypoxic problemswith silicone hydrogel lenses. Thus, conditions such as epithelial microcysts, limbal redness, hypoxic staining, stromal neovascularisation, oedema and endothelial polymegethism do not occur with these lenses. My view is that – looking at the “big picture” – we are far better off now that we have silicone hydrogel lenses.
Resumo:
Recent literature suggests that mesenchymal stem/stromal cells (MSC) could be used as Trojan Horses to deliver “death-signals” to cancer cells. Herein, we describe the development of a novel multichannel cell migration device, and use it to investigate the relative migration rates of bone marrow-derived MSC and breast cancer cells (MCF-7) towards each other. Confluent monolayers of MSC and MCF-7 were established in adjacent chambers separated by an array of 14 microchannels. Initially, culture chambers were isolated by air bubbles (air-valves) contained within each microchannel, and then bubbles were displaced to initiate the assay. The MCF-7 cells migrated preferentially towards MSC, whilst the MSC did not migrate preferentially towards the MCF-7 cells. Our results corroborate previous literature that suggests MSC migration towards cancer cells in vivo is in response to the associated inflammation rather than directly to signals secreted by the cancer cells themselves.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.
Resumo:
Mammographic density (MD) is a strong heritable risk factor for breast cancer, and may decrease with increasing parity. However, the biomolecular basis for MD-associated breast cancer remains unclear, and systemic hormonal effects on MD-associated risk is poorly understood. This study assessed the effect of murine peripartum states on high and low MD tissue maintained in a xenograft model of human MD. Method High and low MD human breast tissues were precisely sampled under radiographic guidance from prophylactic mastectomy specimens of women. The high and low MD tissues were maintained in separate vascularised biochambers in nulliparous or pregnant SCID mice for 4 weeks, or mice undergoing postpartum involution or lactation for three additional weeks. High and low MD biochamber material was harvested for histologic and radiographic comparisons during various murine peripartum states. High and low MD biochamber tissues in nulliparous mice were harvested at different timepoints for histologic and radiographic comparisons. Results High MD biochamber tissues had decreased stromal (p = 0.0027), increased adipose (p = 0.0003) and a trend to increased glandular tissue areas (p = 0.076) after murine postpartum involution. Stromal areas decreased (p = 0.042), while glandular (p = 0.001) and adipose areas (p = 0.009) increased in high MD biochamber tissues during lactation. A difference in radiographic density was observed in high (p = 0.0021) or low MD biochamber tissues (p = 0.004) between nulliparous, pregnant and involution groups. No differences in tissue composition were observed in high or low MD biochamber tissues maintained for different durations, although radiographic density increased over time. Conclusion High MD biochamber tissues had measurable histologic changes after postpartum involution or lactation. Alterations in radiographic density occurred in biochamber tissues between different peripartum states and over time. These findings demonstrate the dynamic nature of the human MD xenograft model, providing a platform for studying the biomolecular basis of MD-associated cancer risk. © 2013 Springer Science+Business Media New York.
Resumo:
Background Breast carcinoma is accompanied by changes in the acellular and cellular components of the microenvironment, the latter typified by a switch from fibroblasts to myofibroblasts. Methods: We utilised conditioned media cultures, Western blot analysis and immunocytochemistry to investigate the differential effects of normal mammary fibroblasts (NMFs) and mammary cancer-associated fibroblasts (CAFs) on the phenotype and behaviour of PMC42-LA breast cancer cells. NMFs were obtained from a mammary gland at reduction mammoplasty, and CAFs from a mammary carcinoma after resection. Results We found greater expression of myofibroblastic markers in CAFs than in NMFs. Medium from both CAFs and NMFs induced novel expression of α-smooth muscle actin and cytokeratin-14 in PMC42-LA organoids. However, although conditioned media from NMFs resulted in distribution of vimentin-positive cells to the periphery of PMC42-LA organoids, this was not seen with CAF-conditioned medium. Upregulation of vimentin was accompanied by a mis-localization of E-cadherin, suggesting a loss of adhesive function. This was confirmed by visualizing the change in active β-catenin, localized to the cell junctions in control cells/ cells in NMF-conditioned medium, to inactive β-catenin, localized to nuclei and cytoplasm in cells in CAF-conditioned medium. Conclusion We found no significant difference between the influences of NMFs and CAFs on PMC42-LA cell proliferation, viability, or apoptosis; significantly, we demonstrated a role for CAFs, but not for NMFs, in increasing the migratory ability of PMC42-LA cells. By concentrating NMF-conditioned media, we demonstrated the presence of factor(s) that induce epithelial-mesenchymal transition in NMF-conditioned media that are present at higher levels in CAF-conditioned media. Our in vitro results are consistent with observations in vivo showing that alterations in stroma influence the phenotype and behaviour of surrounding cells and provide evidence for a role for CAFs in stimulating cancer progression via an epithelial-mesenchymal transition. These findings have implications for our understanding of the roles of signalling between epithelial and stromal cells in the development and progression of mammary carcinoma.
Resumo:
Mammographic density (MD) is the area of breast tissue that appears radiologically white on mammography. Although high MD is a strong risk factor for breast cancer, independent of BRCA1/2 mutation status, the molecular basis of high MD and its associated breast cancer risk is poorly understood. MD studies will benefit from an animal model, where hormonal, gene and drug perturbations on MD can be measured in a preclinical context. High and low MD tissues were selectively sampled by stereotactic biopsy from operative specimens of high-risk women undergoing prophylactic mastectomy. The high and low MD tissues were transferred into separate vascularised biochambers in the groins of SCID mice. Chamber material was harvested after 6 weeks for histological analyses and immunohistochemistry for cytokeratins, vimentin and a human-specific mitochondrial antigen. Within-individual analysis was performed in replicate mice, eliminating confounding by age, body mass index and process-related factors, and comparisons were made to the parental human tissue. Maintenance of differential MD post-propagation was assessed radiographically. Immunohistochemical staining confirmed the preservation of human glandular and stromal components in the murine biochambers, with maintenance of radiographic MD differential. Propagated high MD regions had higher stromal (p = 0.0002) and lower adipose (p = 0.0006) composition, reflecting the findings in the original human breast tissue, although glands appeared small and non-complex in both high and low MD groups. No significant differences were observed in glandular area (p = 0.4) or count (p = 0.4) between high and low MD biochamber tissues. Human mammary glandular and stromal tissues were viably maintained in murine biochambers, with preservation of differential radiographic density and histological features. Our study provides a murine model for future studies into the biomolecular basis of MD as a risk factor for breast cancer.
Resumo:
Mammographic density (MD) adjusted for age and body mass index (BMI) is a strong heritable breast cancer risk factor; however, its biological basis remains elusive. Previous studies assessed MD-associated histology using random sampling approaches, despite evidence that high and low MD areas exist within a breast and are negatively correlated with respect to one another. We have used an image-guided approach to sample high and low MD tissues from within individual breasts to examine the relationship between histology and degree of MD. Image-guided sampling was performed using two different methodologies on mastectomy tissues (n = 12): (1) sampling of high and low MD regions within a slice guided by bright (high MD) and dark (low MD) areas in a slice X-ray film; (2) sampling of high and low MD regions within a whole breast using a stereotactically guided vacuum-assisted core biopsy technique. Pairwise analysis accounting for potential confounders (i.e. age, BMI, menopausal status, etc.) provides appropriate power for analysis despite the small sample size. High MD tissues had higher stromal (P = 0.002) and lower fat (P = 0.002) compositions, but no evidence of difference in glandular areas (P = 0.084) compared to low MD tissues from the same breast. High MD regions had higher relative gland counts (P = 0.023), and a preponderance of Type I lobules in high MD compared to low MD regions was observed in 58% of subjects (n = 7), but did not achieve significance. These findings clarify the histologic nature of high MD tissue and support hypotheses regarding the biophysical impact of dense connective tissue on mammary malignancy. They also provide important terms of reference for ongoing analyses of the underlying genetics of MD.
Resumo:
Matrix metalloproteinase-2 (MMP-2), a zymogen requiring proteolytic activation for catalytic activity, has been implicated broadly in the invasion and metastasis of many cancer model systems, including human breast cancer (HBC). MMP-2 has been immunolocalized to carcinomatous human breast, where the degree of activation of MMP-2 correlates well with tumor grade and patient prognosis. Using Matrigel assays, we have stratified HBC cell lines for invasiveness in vitro, and compared this to their potential for metastatic spread in nude mice. HBC cell lines expressing the mesenchymal marker protein vimentin were found to be highly invasive in vitro, and tended to form metastases in nude mice. We have further discovered that culture on collagen-I gels (Vitrogen(TM): Vg) induces MMP-2-activator in highly invasive but not poorly invasive HBC cell lines. As seen for other MMP-2-activator inducing regimens, this induction requires protein synthesis and an intact MMP-2 hemopexin-like domain, appears to be mediated by a cell surface activity, and can be inhibited by metalloproteinase inhibitors. The induction is highly specific to collagen I, and is not seen with thin coatings of collagen I, collagen IV, laminin, or fibronectin, or with 3-dimensional gels of laminin, Matrigel, or gelatin. This review focuses on collagen I and MMP- 2, their localization and source in HBC, and their relationship(s) to MMP-2 activation and HBC metastasis. The relevance of collagen I in activation of MMP-2 in vivo is discussed in terms of stromal cell: tumor cell interaction for collagen I deposition, MMP-2 production and MMP-2-activation. Such cooperativity may exist in vivo for MMP-2 participation in HBC dissemination. A more complete understanding of the regulation of MMP-2-activator by type I collagen may provide new avenues for improved diagnosis and prognosis of human breast cancer.
Resumo:
We have previously observed in vitro that some stromal proteinases (MMP- 2, MT1-MMP) were expressed or activated by invasive carcinoma cell lines exhibiting mesenchymal features, presumably acquired through an epithelial to mesenchymal transition (EMT). To examine the potential contribution of c- ets-1 to this phenotype, we have compared here the expression of c-ets-1 with invasiveness in vitro and expression of vimentin, E-cadherin, uPA, MMP-1 and MMP-3 in a panel of human breast cancer cell lines. Our results clearly demonstrate an association between c-ets-1 expression and the invasive, EMT- derived phenotype, which is typified by the expression of vimentin and the lack of E-cadherin. While absent from the two non-invasive, vimentin-negative cell lines, c-ets-1 was abundantly expressed in all the four vimentin- positive lines. However, we could not find a clear quantitative or qualitative relationship between the expression of c-ets-1 and the three proteinases known to he regulated by c-ets-1, except that when they were expressed, it was only in the invasive c-ets-1-positive lines. UPA mRNAs were found in three of the four vimentin-positive lines, MMP-1 in two of the four, and MMP-3 could not be detected in any of the cell lines. Intriguingly, MDA- MB-435 cells, which exhibit the highest metastatic potential of these cell lines in nude mice, expressed vimentin and c-ets-1, but lacked expression of these three proteinases, at least under the culture conditions employed. Taken together, our results show that c-ets-1 expression is associated with an invasive, EMT-derived phenotype in breast cancer cells, although it is apparently not sufficient to ensure the expression of uPA, MMP-1 or MMP-3, in the vimentin-positive cells. Such proteases regulation is undoubtedly qualified by the cellular context. This study therefore advances our understanding of the molecular regulation of invasiveness in EMT-associated carcinoma progression, and suggests that c-ets-1 may contribute to the invasive phenotype in carcinoma cells.
Resumo:
Mortality in breast cancer is linked to metastasis and recurrence yet there is no acceptable biological model for cancer relapse. We hypothesise that there might exist primary tumour cells capable of escaping surgery by migration and resisting radiotherapy and chemotherapy to cause cancer recurrence. We investigated this possibility in invasive ductal carcinoma (IDC) tissue and observed the presence of solitary primary tumour cells (SPCs) in the dense collagen stroma that encapsulates intratumoural cells (ICs). In IDC tissue sections, collagen was detected with either Masson's Trichrome or by second harmonics imaging. Cytokeratin-19 (CK-19) and vimentin (VIM) antibodies were, respectively, used to identify epithelial-derived tumour cells and to indicate epithelial to mesenchymal transition (EMT). Confocal/multiphoton microscopy showed that ICs from acini were mainly CK-19 +ve and were encapsulated by dense stromal collagen. Within the stroma, SPCs were detected by their staining for both CK-19 and VIM (confirming EMT). ICs and SPCs were subsequently isolated by laser capture microdissection followed by multiplex tandem-PCR studies. SPCs were found to be enriched for pro-migratory and anti-proliferative genes relative to ICs. In vitro experiments using collagen matrices at 20 mg/cm 3, similar in density to tumour matrices, demonstrated that SPC-like cells were highly migratory but dormant, phenotypes that recapitulated the genotypes of SPCs in clinical tissue. These data suggest that SPCs located at the breast cancer perimeter are invasive and dormant such that they may exceed surgical margins and resist local and adjuvant therapies. This study has important connotations for a role of SPCs in local recurrence.
Resumo:
Epithelial-mesenchymal transition (EMT) is a feature of migratory cellular processes in all stages of life, including embryonic development and wound healing. Importantly, EMT features cluster with disease states such as chronic fibrosis and cancer. The dissolution of the E-cadherin-mediated adherens junction (AJ) is a key preliminary step in EMT and may occur early or late in the growing epithelial tumour. This is a first step for tumour cells towards stromal invasion, intravasation, extravasation and distant metastasis. The AJ may be inactivated in EMT by directed E-cadherin cleavage; however, it is increasingly evident that the majority of AJ changes are transcriptional and mediated by an expanding group of transcription factors acting directly or indirectly to repress E-cadherin expression. A review of the current literature has revealed that these factors may regulate each other in a hierarchical pattern where Snail1 (formerly Snail) and Snail2 (formerly Slug) are initially induced, leading to the activation of Zeb family members, TCF3, TCF4, Twist, Goosecoid and FOXC2. Within this general pathway, many inter-regulatory relationships have been defined which may be important in maintaining the EMT phenotype. This may be important given the short half-life of Snail1 protein. We have investigated these inter-regulatory relationships in the mesenchymal breast carcinoma cell line PMC42 (also known as PMC42ET) and its epithelial derivative, PMC42LA. This review also discusses several newly described regulators of E-cadherin repressors including oestrogen receptor-α and new discoveries in hypoxia- and growth factor-induced EMT. Finally, we evaluated how these findings may influence approaches to current cancer treatment.
Resumo:
Recreating an environment that supports and promotes fundamental homeostatic mechanisms is a significant challenge in tissue engineering. Optimizing cell survival, proliferation, differentiation, apoptosis and angiogenesis, and providing suitable stromal support and signalling cues are keys to successfully generating clinically useful tissues. Interestingly, those components are often subverted in the cancer setting, where aberrant angiogenesis, cellular proliferation, cell signalling and resistance to apoptosis drive malignant growth. In contrast to tissue engineering, identifying and inhibiting those pathways is a major challenge in cancer research. The recent discovery of adult tissue-specific stem cells has had a major impact on both tissue engineering and cancer research. The unique properties of these cells and their role in tissue and organ repair and regeneration hold great potential for engineering tissue-specific constructs. The emerging body of evidence implicating stem cells and progenitor cells as the source of oncogenic transformation prompts caution when using these cells for tissue-engineering purposes. While tissue engineering and cancer research may be considered as opposed fields of research with regard to their proclaimed goals, the compelling overlap in fundamental pathways underlying these processes suggests that cross-disciplinary research will benefit both fields. In this review article, tissue engineering and cancer research are brought together and explored with regard to discoveries that may be of mutual benefit.