272 resultados para speed-based diagnostics
Resumo:
Abnormal event detection has attracted a lot of attention in the computer vision research community during recent years due to the increased focus on automated surveillance systems to improve security in public places. Due to the scarcity of training data and the definition of an abnormality being dependent on context, abnormal event detection is generally formulated as a data-driven approach where activities are modeled in an unsupervised fashion during the training phase. In this work, we use a Gaussian mixture model (GMM) to cluster the activities during the training phase, and propose a Gaussian mixture model based Markov random field (GMM-MRF) to estimate the likelihood scores of new videos in the testing phase. Further-more, we propose two new features: optical acceleration, and the histogram of optical flow gradients; to detect the presence of any abnormal objects and speed violations in the scene. We show that our proposed method outperforms other state of the art abnormal event detection algorithms on publicly available UCSD dataset.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. HRV analysis is an important tool to observe the heart’s ability to respond to normal regulatory impulses that affect its rhythm. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. A computer-based arrhythmia detection system of cardiac states is very useful in diagnostics and disease management. In this work, we studied the identification of the HRV signals using features derived from HOS. These features were fed to the support vector machine (SVM) for classification. Our proposed system can classify the normal and other four classes of arrhythmia with an average accuracy of more than 85%.
Resumo:
This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.
Resumo:
Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity - past, present and future. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3 mm to 30 mm in length. ("Natural-colour" is used to contrast with "false-colour", i.e., colour generated from, or applied to, gray-scale data post-acquisition.) Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control. © 2014 Nguyen et al.
Resumo:
This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.
Resumo:
This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.
Resumo:
This chapter focuses on the implementation of the TS (Tagaki-Sugino) fuzzy controller for the Doubly Fed Induction Generator (DFIG) based wind generator. The conventional PI control loops for mantaining desired active power and DC capacitor voltage is compared with the TS fuzzy controllers. DFIG system is represented by a third-order model where electromagnetic transients of the stator are neglected. The effectiveness of the TS-fuzzy controller on the rotor speed oscillations and the DC capacitor voltage variations of the DFIG damping controller on converter ratings is also investigated. The results from the time domain simulations are presented to elucidate the effectiveness of the TS-fuzzy controller over the conventional PI controller in the DFIG system. The proposed TS-fuzzy con-troller can improve the fault ride through capability of DFIG compared to the conventional PI controller.
Resumo:
Aim: To systematically review the literature investigating the incidence of fatal and or nonfatal low-speed vehicle run-over (LSVRO) incidents in children aged 0–15 years. Methods: The following databases were searched using specific search terms, from their date of conception up to June 2011: Cochrane Library, Medline, CINAHL, Embase, AMI, Sociological Abstracts, ERIC, PsycArticles, PsycInfo, Urban Studies and Planning; Australian Criminology Database; Dissertations and Thesis; Academic Research Library; Social Services Abstracts; Family and Society; Scopus; and Web of Science. A total of 128 articles were identified in the databases (33 found by hand searching). The title and abstract of these were read, and 102 were removed because they were not primary research articles relating to LSVRO-type injuries. Twenty-six articles were assessed against the inclusion (reporting population level incidence rates) and exclusion criteria, 19 of which were excluded, leaving a total of five articles for inclusion in the review. Findings: Five studies were identified that met the inclusion criteria. The incidence rate in nonfatal LSVRO events varied in the range of 7.09 to 14.79 per 100,000 and from 0.63 to 3.2 per 100,000 in fatal events. Discussion: Using International Classification of Diseases codes for classifying fatal or nonfatal LSVRO incidents is problematic as there is no specific code for LSVRO. The current body of research is void of a comprehensive secular population data analysis. Only with an improved spectrum of incidence rates will appropriate evaluation of this problem be possible, and this will inform nursing prevention interventions. The effect of LSVRO incidents is clearly understudied. More research is required to address incidence rates in relation to culture, environment, risk factors, car design, and injury characteristics. Conclusions: Thevlack of nursing research or policy around this area of injury, most often to children, indicates a field of inquiry and policy development that needs attention.
Resumo:
This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.
Resumo:
This paper presents the validation of a manoeuvring model for a novel 127m-vehicle-passenger trimaran via full scale trials. The adopted structure of the model is based on a model previously proposed in the literature with some simplifications. The structure of the model is discussed. Then initial parameter estimates are computed, and the final set of parameters are obtained via adjustments based on engineering judgement and application of a genetic algorithm so as to match the data of the trials. The validity of the model is also assessed with data from a trial different from the one use for the parameter adjustment. The model shows good agreement with the trial data.
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sized trucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.
Resumo:
Imbalance is not only a direct major cause of downtime in wind turbines, but also accelerates the degradation of neighbouring and downstream components (e.g. main bearing, generator). Along with detection, the imbalance quantification is also essential as some residual imbalance always exist even in a healthy turbine. Three different commonly used sensor technologies (vibration, acoustic emission and electrical measurements) are investigated in this work to verify their sensitivity to different imbalance grades. This study is based on data obtained by experimental tests performed on a small scale wind turbine drive train test-rig for different shaft speeds and imbalance levels. According to the analysis results, electrical measurements seem to be the most suitable for tracking the development of imbalance.
Resumo:
This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.