580 resultados para software failure prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the utility of self-efficacy as a predictor of social activity and mood control in multiple sclerosis (MS). Seventy-one subjects with MS were recruited from people attending an MS centre or from a mailing list and were examined on two occasions that were two months apart. Clinic patients were more disabled than patients who completed assessments by post, but they were of higher socioeconomic status and were less dysphoric. We attempted to predict self-reported performance of mood control and social activity at two months, from self-efficacy or performance on these tasks at pretest. Demographic variables, disorder status, disability, self-esteem and depression were also allowed to compete for entry into multiple regressions. Substantial stability in mood, performance and disability was observed over the two months. In both mood control and social activity, past performance was the strongest predictor of later performance, but self-efficacy also contributed significantly to the prediction. The disability level entered a prediction of socila activity, but no other variables predicted either type of performance. A secondary analysis predicting self-esteem at two months also included self-efficacy for social activity, illustrating the contribution of perceived capability to later assessments of self-worth. The study provided support for self-efficacy as a predictor of later behavioural outcomes and self-esteem in multiple sclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrplasty involved injecting cement into a fractured vertebra to provide stabilisation. There is clinical evidence to suggest however that vertebroplasty may be assocated with a higher risk of adjacent vertebral fracture; which may be due to the change in material properties of the post-procedure vertebra modifying the transmission of mechanical stresses to adjacent vertebrae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (N mm− 1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived from a single 2D radiographic image. This ex-vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tested a social–cognitive model of depressive episodes and their treatment within a predictive study of treatment response. 42 clinically depressed volunteers (aged 22–60 yrs) were given self-efficacy (SE) questionnaires and other measures before and after treatment with cognitive therapy. Results support the idea that SE and skills regarding control of negative cognition mediates a sustained response to cognitive treatment for depression. Not only did mood-control variables correlate highly with concurrent changes in depression scores during treatment, but the posttreatment SE measure discriminated Ss who relapsed over the next 12 mo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invited one hour presentation at Microsoft Tech Ed 2009 about getting students interested in games programming at QUT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective We aimed to predict sub-national spatial variation in numbers of people infected with Schistosoma haematobium, and associated uncertainties, in Burkina Faso, Mali and Niger, prior to implementation of national control programmes. Methods We used national field survey datasets covering a contiguous area 2,750 × 850 km, from 26,790 school-aged children (5–14 years) in 418 schools. Bayesian geostatistical models were used to predict prevalence of high and low intensity infections and associated 95% credible intervals (CrI). Numbers infected were determined by multiplying predicted prevalence by numbers of school-aged children in 1 km2 pixels covering the study area. Findings Numbers of school-aged children with low-intensity infections were: 433,268 in Burkina Faso, 872,328 in Mali and 580,286 in Niger. Numbers with high-intensity infections were: 416,009 in Burkina Faso, 511,845 in Mali and 254,150 in Niger. 95% CrIs (indicative of uncertainty) were wide; e.g. the mean number of boys aged 10–14 years infected in Mali was 140,200 (95% CrI 6200, 512,100). Conclusion National aggregate estimates for numbers infected mask important local variation, e.g. most S. haematobium infections in Niger occur in the Niger River valley. Prevalence of high-intensity infections was strongly clustered in foci in western and central Mali, north-eastern and northwestern Burkina Faso and the Niger River valley in Niger. Populations in these foci are likely to carry the bulk of the urinary schistosomiasis burden and should receive priority for schistosomiasis control. Uncertainties in predicted prevalence and numbers infected should be acknowledged and taken into consideration by control programme planners.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been recognised that government and public sector services suffer an innovation deficit compared to private or market-based services. This paper argues that this can be explained as an unintended consequence of the concerted public sector drive toward the elimination of waste through efficiency, accountability and transparency. Yet in an evolving economy this can be a false efficiency, as it also eliminates the 'good waste' that is a necessary cost of experimentation. This results in a systematic trade0off in the public sector between the static efficiency of minimizing the misuse of public resources and the dynamic efficiency of experimentation. this is inherently biased against risk and uncertainty and therein, explains why governments find service innovation so difficult. In the drive to eliminate static inefficiencies, many political systems have susequently overshot and stifled policy innovation. I propose the 'Red Queen' solution of adaptive economic policy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the use of the Chimera Architecture as the basis for a generative rhythmic improvisation system that is intended for use in ensemble contexts. This interactive soft- ware system learns in real time based on an audio input from live performers. The paper describes the components of the Chimera Architecture including a novel analysis engine that uses prediction to robustly assess the rhythmic salience of the input stream. Analytical results are stored in a hierarchical structure that includes multiple scenarios which allow ab- stracted and alternate interpretations of the current metrical context. The system draws upon this Chimera Architecture when generating a musical response. The generated rhythms are intended to have a particular ambiguity in relation to the music performance by other members of the ensemble. Ambi- guity is controlled through alternate interpretations of the Chimera. We describe an implementation of the Chimera Ar- chitecture that focuses on rhythmic material, and present and discuss initial experimental results of the software system playing along with recordings of a live performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is aimed at investigating the effect of web openings on the plastic bending behaviour and section moment capacity of a new cold-formed steel beam known as LiteSteel beam (LSB) using numerical modelling. Different LSB sections with varying circular hole diameter and spacing were considered. A simplified but appropriate numerical modelling technique was developed for the modelling of monosymmetric sections such as LSBs subject to bending, and was used to simulate a series of section moment capacity tests of LSB flexural members with web openings. The buckling and ultimate strength behaviour was investigated in detail and the modeling technique was further improved through a comparison of numerical and experimental results. This paper describes the simplified finite element modeling technique used in this study that includes all the significant behavioural effects affecting the plastic bending behaviour and section moment capacity of LSB sections with web holes. Numerical and test results and associated findings are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To meet new challenges of Enterprise Systems that essentially go beyond the initial implementation, contemporary organizations seek employees with business process experts with software skills. Despite a healthy demand from the industry for such expertise, recent studies reveal that most Information Systems (IS) graduates are ill-equipped to meet the challenges of modern organizations. This paper shares insights and experiences from a course that is designed to provide a business process centric view of a market leading Enterprise System. The course, designed for both undergraduate and graduate students, uses two common business processes in a case study that employs both sequential and explorative exercises. Student feedback gained through two longitudinal surveys across two phases of the course demonstrates promising signs of the teaching approach.