166 resultados para robust parameter estimation
Resumo:
The paper introduces the design of robust current and voltage control algorithms for a grid-connected three-phase inverter which is interfaced to the grid through a high-bandwidth three-phase LCL filter. The algorithms are based on the state feedback control which have been designed in a systematic approach and improved by using oversampling to deal with the issues arising due to the high-bandwidth filter. An adaptive loop delay compensation method has also been adopted to minimize the adverse effects of loop delay in digital controller and to increase the robustness of the control algorithm in the presence of parameter variations. Simulation results are presented to validate the effectiveness of the proposed algorithm.
Resumo:
Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state of the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area wide traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation. This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.
Resumo:
Capacitors are widely used for power-factor correction (PFC) in power systems. When a PFC capacitor is installed with a certain load in a microgrid, it may be in parallel with the filter capacitor of the inverter interfacing the utility grid and the local distributed-generation unit and, thus, change the effective filter capacitance. Another complication is the possibility of occurrence of resonance in the microgrid. This paper conducts an in-depth investigation of the effective shunt-filter-capacitance variation and resonance phenomena in a microgrid due to a connection of a PFC capacitor. To compensate the capacitance-parameter variation, an Hinfin controller is designed for the voltage-source- inverter voltage control. By properly choosing the weighting functions, the synthesized Hinfin controller would exhibit high gains at the vicinity of the line frequency, similar to traditional high- performance P+ resonant controller and, thus, would possess nearly zero steady-state error. However, with the robust Hinfin controller, it will be possible to explicitly specify the degree of robustness in face of parameter variations. Furthermore, a thorough investigation is carried out to study the performance of inner current-loop feedback variables under resonance conditions. It reveals that filter-inductor current feedback is more effective in damping the resonance. This resonance can be further attenuated by employing the dual-inverter microgrid conditioner and controlling the series inverter as a virtual resistor affecting only harmonic components without interference with the fundamental power flow. And finally, the study in this paper has been tested experimentally using an experimental microgrid prototype.
Resumo:
This paper is concerned with how a localised and energy-constrained robot can maximise its time in the field by taking paths and tours that minimise its energy expenditure. A significant component of a robot's energy is expended on mobility and is a function of terrain traversability. We estimate traversability online from data sensed by the robot as it moves, and use this to generate maps, explore and ultimately converge on minimum energy tours of the environment. We provide results of detailed simulations and parameter studies that show the efficacy of this approach for a robot moving over terrain with unknown traversability as well as a number of a priori unknown hard obstacles.
Resumo:
After attending this presentation, attendees will gain awareness of the ontogeny of cranial maturation, specifically: (1) the fusion timings of primary ossification centers in the basicranium; and (2) the temporal pattern of closure of the anterior fontanelle, to develop new population-specific age standards for medicolegal death investigation of Australian subadults. This presentation will impact the forensic science community by demonstrating the potential of a contemporary forensic subadult Computed Tomography (CT) database of cranial scans and population data, to recalibrate existing standards for age estimation and quantify growth and development of Australian children. This research welcomes a study design applicable to all countries faced with paucity in skeletal repositories. Accurate assessment of age-at-death of skeletal remains represents a key element in forensic anthropology methodology. In Australian casework, age standards derived from American reference samples are applied in light of scarcity in documented Australian skeletal collections. Currently practitioners rely on antiquated standards, such as the Scheuer and Black1 compilation for age estimation, despite implications of secular trends and population variation. Skeletal maturation standards are population specific and should not be extrapolated from one population to another, while secular changes in skeletal dimensions and accelerated maturation underscore the importance of establishing modern standards to estimate age in modern subadults. Despite CT imaging becoming the gold standard for skeletal analysis in Australia, practitioners caution the application of forensic age standards derived from macroscopic inspection to a CT medium, suggesting a need for revised methodologies. Multi-slice CT scans of subadult crania and cervical vertebrae 1 and 2 were acquired from 350 Australian individuals (males: n=193, females: n=157) aged birth to 12 years. The CT database, projected at 920 individuals upon completion (January 2014), comprises thin-slice DICOM data (resolution: 0.5/0.3mm) of patients scanned since 2010 at major Brisbane Childrens Hospitals. DICOM datasets were subject to manual segmentation, followed by the construction of multi-planar and volume rendering cranial models, for subsequent scoring. The union of primary ossification centers of the occipital bone were scored as open, partially closed or completely closed; while the fontanelles, and vertebrae were scored in accordance with two stages. Transition analysis was applied to elucidate age at transition between union states for each center, and robust age parameters established using Bayesian statistics. In comparison to reported literature, closure of the fontanelles and contiguous sutures in Australian infants occur earlier than reported, with the anterior fontanelle transitioning from open to closed at 16.7±1.1 months. The metopic suture is closed prior to 10 weeks post-partum and completely obliterated by 6 months of age, independent of sex. Utilizing reverse engineering capabilities, an alternate method for infant age estimation based on quantification of fontanelle area and non-linear regression with variance component modeling will be presented. Closure models indicate that the greatest rate of change in anterior fontanelle area occurs prior to 5 months of age. This study complements the work of Scheuer and Black1, providing more specific age intervals for union and temporal maturity of each primary ossification center of the occipital bone. For example, dominant fusion of the sutura intra-occipitalis posterior occurs before 9 months of age, followed by persistence of a hyaline cartilage tongue posterior to the foramen magnum until 2.5 years; with obliteration at 2.9±0.1 years. Recalibrated age parameters for the atlas and axis are presented, with the anterior arch of the atlas appearing at 2.9 months in females and 6.3 months in males; while dentoneural, dentocentral and neurocentral junctions of the axis transitioned from non-union to union at 2.1±0.1 years in females and 3.7±0.1 years in males. These results are an exemplar of significant sexual dimorphism in maturation (p<0.05), with girls exhibiting union earlier than boys, justifying the need for segregated sex standards for age estimation. Studies such as this are imperative for providing updated standards for Australian forensic and pediatric practice and provide an insight into skeletal development of this population. During this presentation, the utility of novel regression models for age estimation of infants will be discussed, with emphasis on three-dimensional modeling capabilities of complex structures such as fontanelles, for the development of new age estimation methods.
Resumo:
A new online method is presented for estimation of the angular randomwalk and rate randomwalk coefficients of inertial measurement unit gyros and accelerometers. In the online method, a state-space model is proposed, and recursive parameter estimators are proposed for quantities previously measured from offline data techniques such as the Allan variance method. The Allan variance method has large offline computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of approximately 100 calculations per data sample.
Resumo:
A new online method is presented for estimation of the angular random walk and rate random walk coefficients of IMU (inertial measurement unit) gyros and accelerometers. The online method proposes a state space model and proposes parameter estimators for quantities previously measured from off-line data techniques such as the Allan variance graph. Allan variance graphs have large off-line computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of O(100) calculations per data sample.
Resumo:
This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.
Resumo:
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R2=99.9% and R2=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Resumo:
We derive a new method for determining size-transition matrices (STMs) that eliminates probabilities of negative growth and accounts for individual variability. STMs are an important part of size-structured models, which are used in the stock assessment of aquatic species. The elements of STMs represent the probability of growth from one size class to another, given a time step. The growth increment over this time step can be modelled with a variety of methods, but when a population construct is assumed for the underlying growth model, the resulting STM may contain entries that predict negative growth. To solve this problem, we use a maximum likelihood method that incorporates individual variability in the asymptotic length, relative age at tagging, and measurement error to obtain von Bertalanffy growth model parameter estimates. The statistical moments for the future length given an individual's previous length measurement and time at liberty are then derived. We moment match the true conditional distributions with skewed-normal distributions and use these to accurately estimate the elements of the STMs. The method is investigated with simulated tag-recapture data and tag-recapture data gathered from the Australian eastern king prawn (Melicertus plebejus).
Resumo:
Rank-based inference is widely used because of its robustness. This article provides optimal rank-based estimating functions in analysis of clustered data with random cluster effects. The extensive simulation studies carried out to evaluate the performance of the proposed method demonstrate that it is robust to outliers and is highly efficient given the existence of strong cluster correlations. The performance of the proposed method is satisfactory even when the correlation structure is misspecified, or when heteroscedasticity in variance is present. Finally, a real dataset is analyzed for illustration.
Resumo:
Consider a general regression model with an arbitrary and unknown link function and a stochastic selection variable that determines whether the outcome variable is observable or missing. The paper proposes U-statistics that are based on kernel functions as estimators for the directions of the parameter vectors in the link function and the selection equation, and shows that these estimators are consistent and asymptotically normal.
Resumo:
The Fabens method is commonly used to estimate growth parameters k and l infinity in the von Bertalanffy model from tag-recapture data. However, the Fabens method of estimation has an inherent bias when individual growth is variable. This paper presents an asymptotically unbiassed method using a maximum likelihood approach that takes account of individual variability in both maximum length and age-at-tagging. It is assumed that each individual's growth follows a von Bertalanffy curve with its own maximum length and age-at-tagging. The parameter k is assumed to be a constant to ensure that the mean growth follows a von Bertalanffy curve and to avoid overparameterization. Our method also makes more efficient use nf thp measurements at tno and recapture and includes diagnostic techniques for checking distributional assumptions. The method is reasonably robust and performs better than the Fabens method when individual growth differs from the von Bertalanffy relationship. When measurement error is negligible, the estimation involves maximizing the profile likelihood of one parameter only. The method is applied to tag-recapture data for the grooved tiger prawn (Penaeus semisulcatus) from the Gulf of Carpentaria, Australia.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
Common diseases such as endometriosis (ED), Alzheimer's disease (AD) and multiple sclerosis (MS) account for a significant proportion of the health care burden in many countries. Genome-wide association studies (GWASs) for these diseases have identified a number of individual genetic variants contributing to the risk of those diseases. However, the effect size for most variants is small and collectively the known variants explain only a small proportion of the estimated heritability. We used a linear mixed model to fit all single nucleotide polymorphisms (SNPs) simultaneously, and estimated genetic variances on the liability scale using SNPs from GWASs in unrelated individuals for these three diseases. For each of the three diseases, case and control samples were not all genotyped in the same laboratory. We demonstrate that a careful analysis can obtain robust estimates, but also that insufficient quality control (QC) of SNPs can lead to spurious results and that too stringent QC is likely to remove real genetic signals. Our estimates show that common SNPs on commercially available genotyping chips capture significant variation contributing to liability for all three diseases. The estimated proportion of total variation tagged by all SNPs was 0.26 (SE 0.04) for ED, 0.24 (SE 0.03) for AD and 0.30 (SE 0.03) for MS. Further, we partitioned the genetic variance explained into five categories by a minor allele frequency (MAF), by chromosomes and gene annotation. We provide strong evidence that a substantial proportion of variation in liability is explained by common SNPs, and thereby give insights into the genetic architecture of the diseases.