113 resultados para quantum yield
Resumo:
Much of the work currently occurring in the field of Quantum Interaction (QI) relies upon Projective Measurement. This is perhaps not optimal, cognitive states are not nearly as well behaved as standard quantum mechanical systems; they exhibit violations of repeatability, and the operators that we use to describe measurements do not appear to be naturally orthogonal in cognitive systems. Here we attempt to map the formalism of Positive Operator Valued Measure (POVM) theory into the domain of semantic memory, showing how it might be used to construct Bell-type inequalities.
Resumo:
A quantum-spin-Hall (QSH) state was achieved experimentally, albeit at a low critical temperature because of the narrow band gap of the bulk material. Twodimensional topological insulators are critically important for realizing novel topological applications. Using density functional theory (DFT), we demonstrated that hydrogenated GaBi bilayers (HGaBi) form a stable topological insulator with a large nontrivial band gap of 0.320 eV, based on the state-of-the-art hybrid functional method, which is implementable for achieving QSH states at room temperature. The nontrivial topological property of the HGaBi lattice can also be confirmed from the appearance of gapless edge states in the nanoribbon structure. Our results provide a versatile platform for hosting nontrivial topological states usable for important nanoelectronic device applications.
Resumo:
The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Plasmonics is a recently emerged technology that enables the compression of electromagnetic waves into miniscule metallic structures, thus enabling the focusing and routing of light on the nanoscale. Plasmonic waveguides can be used to miniaturise the size of integrated chip circuits while increasing the data transmission speed. Plasmonic waveguides are used to route the plasmons around a circuit and are a major focus of this thesis. Also, plasmons are highly sensitive to the surrounding dielectric environment. Using this property we have experimentally realised a refractive index sensor to detect refractive index change in solutions.
Resumo:
Modern dairy farming in Australia relies on substantial inputs of fertiliser nitrogen (N) to underpin economic production. However, N lost from dairy systems represents an opportunity cost and can pose a number of environmental risks. Nitrogen cycle inhibitors can be co-applied with N fertilisers to slow the conversion of urea to NH4+ to reduce losses via volatilisation, and slow the conversion of NH4+ to NO3- to minimize leaching of NO3- and gaseous losses via nitrification and denitrification. In a field campaign in a high input ryegrass-kikuyu pasture system we compared the soil N pools, losses and pasture production between a) urea coated with the nitrification inhibitor (3,4-dimethyl pyrazole phosphate - DMPP) b) urea coated with the urease inhibitor (N-(n-butyl) thiophosphoric triamide - NBPT) and c) standard urea. There was no treatment effect (P>0.05) on soil mineral N, pasture yield, N2O flux nor leaching of NO3- cf. standard urea. We hypothesise that at our site, because gaseous losses were highly episodic (rainfall was erratic and displayed no seasonal rainfall nor soil wetting pattern) that there was a lack of coincidence of N application and conditions conducive to gaseous losses, thus the effectiveness of the inhibitor products was minimal and did not result in an increase in pasture yield. There remains a paucity of knowledge on N cycle inhibitors in relation to their effective use in field system to increase N use efficiency. Further research is required to define under what field conditions inhibitor products are effective in order to be able to provide accurate advice to managers of nitrogen in production systems.
Resumo:
Topological insulators (TIs) exhibit novel physics with great promise for new devices, but considerable challenges remain to identify TIs with high structural stability and large nontrivial band gap suitable for practical applications. Here we predict by first-principles calculations a two-dimensional (2D) TI, also known as a quantum spin Hall (QSH) insulator, in a tetragonal bismuth bilayer (TB-Bi) structure that is dynamically and thermally stable based on phonon calculations and finite-temperature molecular dynamics simulations. Density functional theory and tight-binding calculations reveal a band inversion among the Bi-p orbits driven by the strong intrinsic spin-orbit coupling, producing a large nontrivial band gap, which can be effectively tuned by moderate strains. The helical gapless edge states exhibit a linear dispersion with a high Fermi velocity comparable to that of graphene, and the QSHphase remains robust on a NaCl substrate. These remarkable properties place TB-Bi among the most promising 2D TIs for high-speed spintronic devices, and the present results provide insights into the intriguing QSH phenomenon in this new Bi structure and offer guidance for its implementation in potential applications.
Resumo:
This article presents and evaluates Quantum Inspired models of Target Activation using Cued-Target Recall Memory Modelling over multiple sources of Free Association data. Two components were evaluated: Whether Quantum Inspired models of Target Activation would provide a better framework than their classical psychological counterparts and how robust these models are across the different sources of Free Association data. In previous work, a formal model of cued-target recall did not exist and as such Target Activation was unable to be assessed directly. Further to that, the data source used was suspected of suffering from temporal and geographical bias. As a consequence, Target Activation was measured against cued-target recall data as an approximation of performance. Since then, a formal model of cued-target recall (PIER3) has been developed [10] with alternative sources of data also becoming available. This allowed us to directly model target activation in cued-target recall with human cued-target recall pairs and use multiply sources of Free Association Data. Featural Characteristics known to be important to Target Activation were measured for each of the data sources to identify any major differences that may explain variations in performance for each of the models. Each of the activation models were used in the PIER3 memory model for each of the data sources and was benchmarked against cued-target recall pairs provided by the University of South Florida (USF). Two methods where used to evaluate performance. The first involved measuring the divergence between the sets of results using the Kullback Leibler (KL) divergence with the second utilizing a previous statistical analysis of the errors [9]. Of the three sources of data, two were sourced from human subjects being the USF Free Association Norms and the University of Leuven (UL) Free Association Networks. The third was sourced from a new method put forward by Galea and Bruza, 2015 in which pseudo Free Association Networks (Corpus Based Association Networks - CANs) are built using co-occurrence statistics on large text corpus. It was found that the Quantum Inspired Models of Target Activation not only outperformed the classical psychological model but was more robust across a variety of data sources.