251 resultados para polymer degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bioassay technique, based on surface-enhanced Raman scattering (SERS) tagged gold nanoparticles encapsulated with a biotin functionalised polymer, has been demonstrated through the spectroscopic detection of a streptavidin binding event. A methodical series of steps preceded these results: synthesis of nanoparticles which were found to give a reproducible SERS signal; design and synthesis of polymers with RAFT-functional end groups able to encapsulate the gold nanoparticle. The polymer also enabled the attachment of a biotin molecule functionalised so that it could be attached to the hybrid nanoparticle through a modular process. Finally, the demonstrations of a positive bioassay for this model construct using streptavidin/biotin binding. The synthesis of silver and gold nanoparticles was performed by using tri-sodium citrate as the reducing agent. The shape of the silver nanoparticles was quite difficult to control. Gold nanoparticles were able to be prepared in more regular shapes (spherical) and therefore gave a more consistent and reproducible SERS signal. The synthesis of gold nanoparticles with a diameter of 30 nm was the most reproducible and these were also stable over the longest periods of time. From the SERS results the optimal size of gold nanoparticles was found to be approximately 30 nm. Obtaining a consistent SERS signal with nanoparticles smaller than this was particularly difficult. Nanoparticles more than 50 nm in diameter were too large to remain suspended for longer than a day or two and formed a precipitate, rendering the solutions useless for our desired application. Gold nanoparticles dispersed in water were able to be stabilised by the addition of as-synthesised polymers dissolved in a water miscible solvent. Polymer stabilised AuNPs could not be formed from polymers synthesised by conventional free radical polymerization, i.e. polymers that did not possess a sulphur containing end-group. This indicated that the sulphur-containing functionality present within the polymers was essential for the self assembly process to occur. Polymer stabilization of the gold colloid was evidenced by a range of techniques including, visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman spectroscopy. After treatment of the hybrid nanoparticles with a series of SERS tags, focussing on 2-quinolinethiol the SERS signals were found to have comparable signal intensity to the citrate stabilised gold nanoparticles. This finding illustrates that the stabilization process does not interfere with the ability of gold nanoparticles to act as substrates for the SERS effect. Incorporation of a biotin moiety into the hybrid nanoparticles was achieved through a =click‘ reaction between an alkyne-functionalised polymer and an azido-functionalised biotin analogue. This functionalized biotin was prepared through a 4-step synthesis from biotin. Upon exposure of the surface-bound streptavidin to biotin-functionalised polymer hybrid gold nanoparticles, then washing, a SERS signal was obtained from the 2-quinolinethiol which was attached to the gold nanoparticles (positive assay). After exposure to functionalised polymer hybrid gold nanoparticles without biotin present then washing a SERS signal was not obtained as the nanoparticles did not bind to the streptavidin (negative assay). These results illustrate the applicability of the use of SERS active functional-polymer encapsulated gold nanoparticles for bioassay application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-change science emphasizes the intimate linkages between the human and environmental components of land management systems. Recent theoretical developments in drylands identify a small set of key principles that can guide the understanding of these linkages. Using these principles, a detailed study of seven major degradation episodes over the past century in Australian grazed rangelands was reanalyzed to show a common set of events: (i) good climatic and economic conditions for a period, leading to local and regional social responses of increasing stocking rates, setting the preconditions for rapid environmental collapse, followed by (ii) a major drought coupled with a fall in the market making destocking financially unattractive, further exacerbating the pressure on the environment; then (iii) permanent or temporary declines in grazing productivity, depending on follow-up seasons coupled again with market and social conditions. The analysis supports recent theoretical developments but shows that the establishment of environmental knowledge that is strictly local may be insufficient on its own for sustainable management. Learning systems based in a wider community are needed that combine local knowledge, formal research, and institutional support. It also illustrates how natural variability in the state of both ecological and social systems can interact to precipitate nonequilibrial change in each other, so that planning cannot be based only on average conditions. Indeed, it is this variability in both environment and social subsystems that hinders the local learning required to prevent collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO2) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO2 moieties to a sulfide phase was observed using XPS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of polymers with a comb architecture were prepared where the poly(olefin sulfone) backbone was designed to be highly sensitive to extreme ultraviolet (EUV) radiation, while the well-defined poly(methyl methacrylate) (PMMA) arms were incorporated with the aim of increasing structural stability. It is hypothesized that upon EUV radiation rapid degradation of the polysulfone backbone will occur leaving behind the well-defined PMMA arms. The synthesized polymers were characterised and have had their performance as chain-scission EUV photoresists evaluated. It was found that all materials possess high sensitivity towards degradation by EUV radiation (E0 in the range 4–6 mJ cm−2). Selective degradation of the poly(1-pentene sulfone) backbone relative to the PMMA arms was demonstrated by mass spectrometry headspace analysis during EUV irradiation and by grazing-angle ATR-FTIR. EUV interference patterning has shown that materials are capable of resolving 30 nm 1:1 line:space features. The incorporation of PMMA was found to increase the structural integrity of the patterned features. Thus, it has been shown that terpolymer materials possessing a highly sensitive poly(olefin sulfone) backbone and PMMA arms are able to provide a tuneable materials platform for chain scission EUV resists. These materials have the potential to benefit applications that require nanopattering, such as computer chip manufacture and nano-MEMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microwave heating technology is a cost-effective alternative way for heating and curing of used in polymer processing of various alternate materials. The work presented in this paper addresses the attempts made by the authors to study the glass transition temperature and curing of materials such as casting resins R2512, R2515 and laminating resin GPR 2516 in combination with two hardeners ADH 2403 and ADH 2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. During this investigation it has been noted that microwave heated mould materials resulted with higher glass transition temperatures and better microstructure. It also noted that Microwave curing resulted in a shorter curing time to reach the maximum percentage cure. From this study it can be concluded that microwave technology can be efficiently and effectively used to cure new generation alternate polymer materials for manufacture of injection moulds in a rapid and efficient manner. Microwave curing resulted in a shorter curing time to reach the maximum percentage cure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.