152 resultados para plants per square meter
Resumo:
A major challenge in the post-genome era of plant biology is to determine the functions of all genes in the plant genome. A straightforward approach to this problem is to reduce or knockout expression of a gene with the hope of seeing a phenotype that is suggestive of its function. Insertional mutagenesis is a useful tool for this type of study but is limited by gene redundancy, lethal knockouts, non-tagged mutants, and the inability to target the inserted element to a specific gene. The efficacy of gene silencing in plants using inverted-repeat transgene constructs that encode a hairpin RNA (hpRNA) has been demonstrated by a number of groups, and has several advantages over insertional mutagenesis. In this paper we describe two improved pHellsgate vectors that facilitate rapid generation of hpRNA-encoding constructs, pHellsgate 4 allows the production of an hpRNA construct in a single step from a single polymerase chain reaction product, while pHellsgate 8 requires a two-step process via an intermediate vector. We show that these vectors are effective at silencing three endogenous genes in Arabidopsis, FLOWERING LOCUS C, PHYTOENE DESATURASE and ETHYLENE INSENSITIVE 2. We also show that a construct of sequences from two genes silences both genes.
Resumo:
Post-transcriptional silencing of plant genes using anti-sense or co-suppression constructs usually results in only a modest proportion of silenced individuals. Recent work has demonstrated the potential for constructs encoding self-complementary 'hairpin' RNA (hpRNA) to efficiently silence genes. In this study we examine design rules for efficient gene silencing, in terms of both the proportion of independent transgenic plants showing silencing, and the degree of silencing. Using hpRNA constructs containing sense/anti-sense arms ranging from 98 to 853 nt gave efficient silencing in a wide range of plant species, and inclusion of an intron in these constructs had a consistently enhancing effect. Intron-containing constructs (ihpRNA) generally gave 90-100% of independent transgenic plants showing silencing. The degree of silencing with these constructs was much greater than that obtained using either co-suppression or anti-sense constructs. We have made a generic vector, pHANNIBAL, that allows a simple, single PCR product from a gene of interest to be easily converted into a highly effective ihpRNA silencing construct. We have also created a high-throughput vector, pHELLSGATE, that should facilitate the cloning of gene libraries or large numbers of defined genes, such as those in EST collections, using an in vitro recombinase system. This system may facilitate the large-scale determination and discovery of plant gene functions in the same way as RNAi is being used to examine gene function in Caenorhabditis elegans.
Resumo:
A very simple leaf assay is described that rapidly and reliably identifies transgenic plants expressing the hygromycin resistance gene, hph or the phosphinothricin resistance gene, bar. Leaf tips were cut from plants propagated either in the glasshouse or in tissue culture and the cut surface embedded in solid medium containing the appropriate selective agent. Non-transgenic barley or rice leaf tips had noticeable symptoms of either bleaching or necrosis after three days on the medium and were completely bleached or necrotic after one week. Transgenic leaf tips remained green and healthy over this period. This gave unambiguous discrimination between transgenic and non-transgenic plants. The leaf assay was also effective for dicot plants tested (tobacco and peas).
Resumo:
In binary vectors, the antibiotic resistance gene used for selection of transformed plant cells is also usually expressed in the transforming Agrobacterium cells. This expression gives the bacterium antibiotic resistance, an unnecessary advantage on selective medium containing the antibiotic. Insertion of a castor bean catalase-1 (CAT-1) gene intron or a Parasponia andersonii haemoglobin gene intron into the coding region of the selectable marker gene, hph, completely abolished the expression of the gene in Agrobacterium, rendering it susceptible to hygromycin B. Use of these modified binary vectors minimized the overgrowth of Agrobacterium during plant transformation. Both of the introns were correctly spliced in plant cells and significantly enhanced hph gene expression in transformed rice tissue. The presence of these introns in the hph coding sequence not only maintained the selection efficiency of the hph gene, but with the CAT-1 intron also substantially increased the frequency of rice transformation. Transgenic lines with an intron-hph gene generally contained fewer gene copies and produced substantially more mRNA of the predicted size. Our results also indicate that transgenic plants with many copies of the transgene were more likely to show gene silencing than plants with 1-3 copies.
Resumo:
The expression patterns of GUS fusion constructs driven by the Agrobacterium rhizogenes RolC and the maize Sh (Shrunken: sucrose synthase-1) promoters were examined in transgenic potatoes (cv. Atlantic). RolC drove high-level gene expression in phloem tissue, bundle sheath cells and vascular parenchyma, but not in xylem or non-vascular tissues. Sh expression was exclusively confined to phloem tissue. Potato leafroll luteovirus (PLRV) replicates only in phloem tissues, and we show that when RolC is used to drive expression of the PLRV coat protein gene, virus-resistant lines can be obtained. In contrast, no significant resistance was observed when the Sh promoter was used.
Resumo:
Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included. The accuracy and efficiency of the technique is verified by comparisons with a number of plane and spatial structures, whose structural response has been reported in independent studies.
Resumo:
Sugar cane processing sites are characterised by high sugar/hemicellulose levels, available moisture and warm conditions, and are relatively unexplored unique microbial environments. The PhyloChip microarray was used to investigate bacterial diversity and community composition in three Australian sugar cane processing plants. These ecosystems were highly complex and dominated by four main Phyla, Firmicutes (the most dominant), followed by Proteobacteria, Bacteroidetes, and Chloroflexi. Significant variation (p , 0.05) in community structure occurred between samples collected from ‘floor dump sediment’, ‘cooling tower water’, and ‘bagasse leachate’. Many bacterial Classes contributed to these differences, however most were of low numerical abundance. Separation in community composition was also linked to Classes of Firmicutes, particularly Bacillales, Lactobacillales and Clostridiales, whose dominance is likely to be linked to their physiology as ‘lactic acid bacteria’, capable of fermenting the sugars present. This process may help displace other bacterial taxa, providing a competitive advantage for Firmicutes bacteria.
Resumo:
In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.
Resumo:
In this study, the mixed convection heat transfer and fluid flow behaviors in a lid-driven square cavity filled with high Prandtl number fluid (Pr = 5400, ν = 1.2×10-4 m2/s) at low Reynolds number is studied using thermal Lattice Boltzmann method (TLBM) where ν is the viscosity of the fluid. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effects of the variations of non dimensional mixed convection parameter called Richardson number(Ri) with and without heat generating source on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles as well as stream function and temperature contours for Ri ranging from 0.1 to 5.0 with other controlling parameters that present in this study. It is found that LBM has good potential to simulate mixed convection heat transfer and fluid flow problem. Finally the simulation results have been compared with the previous numerical and experimental results and it is found to be in good agreement.
Resumo:
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.
Resumo:
The aim of this study is to estimate the ratio of male and female participants in Sports and Exercise Medicine research. Original research articles published in three major Sports and Exercise Medicine journals (Medicine and Science in Sport and Exercise, British Journal of Sports Medicine and American Journal of Sports Medicine) over a three year period were examined. Each article was screened to determine the following: total number of participants, the number of female participants and the number of male participants. The percentage of females and males per article in each of the journals was also calculated. Cross tabulations and Chi square analysis were used to compare the gender representation of participants within each of the journals. Data were extracted from 1, 382 articles involving a total of 6, 076, 705 participants. 2, 366, 998 (39%) participants were female and 3, 709, 707 (61%) male. The average percentage of female participants per article across the journals ranged from 35-37%. Females were significantly under-represented across all of the journals (X2 =23566, df=2, p<0.00001). There were no significant differences between the three journals. In conclusion, Sports and Exercise Medicine practitioners should be cognisant of sexual dimorphism and gender disparity in the current literature.
Resumo:
Virus-based transgene expression systems have become particularly valuable for recombinant protein production in plants. The dual-module in-plant activation (INPACT) expression platform consists of a uniquely designed split-gene cassette incorporating the cis replication elements of Tobacco yellow dwarf geminivirus (TYDV) and an ethanol-inducible activation cassette encoding the TYDV Rep and RepA replication-associated proteins. The INPACT system is essentially tailored for recombinant protein production in stably transformed plants and provides both inducible and high-level transient transgene expression with the potential to be adapted to diverse crop species. The construction of a novel split-gene cassette, the inducible nature of the system and the ability to amplify transgene expression via rolling-circle replication differentiates this system from other DNA- and RNA-based virus vector systems used for stable or transient recombinant protein production in plants. Here we provide a detailed protocol describing the design and construction of a split-gene INPACT cassette, and we highlight factors that may influence optimal activation and amplification of gene expression in transgenic plants. By using Nicotiana tabacum, the protocol takes 6-9 months to complete, and recombinant proteins expressed using INPACT can accumulate to up to 10% of the leaf total soluble protein.
Resumo:
Finite element frame analysis programs targeted for design office application necessitate algorithms which can deliver reliable numerical convergence in a practical timeframe with comparable degrees of accuracy, and a highly desirable attribute is the use of a single element per member to reduce computational storage, as well as data preparation and the interpretation of the results. To this end, a higher-order finite element method including geometric non-linearity is addressed in the paper for the analysis of elastic frames for which a single element is used to model each member. The geometric non-linearity in the structure is handled using an updated Lagrangian formulation, which takes the effects of the large translations and rotations that occur at the joints into consideration by accumulating their nodal coordinates. Rigid body movements are eliminated from the local member load-displacement relationship for which the total secant stiffness is formulated for evaluating the large member deformations of an element. The influences of the axial force on the member stiffness and the changes in the member chord length are taken into account using a modified bowing function which is formulated in the total secant stiffness relationship, for which the coupling of the axial strain and flexural bowing is included.
Resumo:
We present a mini-scale method for nuclear run-on transcription assay. In our method, all the centrifuge steps can be carried out by using micro-tubes for short time (5 min each) throughout the process, including isolation of transcriptionally active nuclei and purification of labeled RNA after synthesis of RNA in isolated nuclei. The assay can be performed using a small amount of plant tissue, which enables analysis of developmental changes in transcriptional status of given genes in a single individual plant. Successful results were obtained using the tissues of flower and leaf of petunia and embryo of pea, suggesting that the method is potentially applicable to a variety of plant tissues.
Resumo:
Background We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. Results We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. Conclusion In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.