271 resultados para physical phenomena simulation
Resumo:
The design of a building is a complicated process, having to formulate diverse components through unique tasks involving different personalities and organisations in order to satisfy multi-faceted client requirements. To do this successfully, the project team must encapsulate an integrated design that accommodates various social, economic and legislative factors. Therefore, in this era of increasing global competition integrated design has been increasingly recognised as a solution to deliver value to clients.----- The ‘From 3D to nD modelling’ project at the University of Salford aims to support integrated design; to enable and equip the design and construction industry with a tool that allows users to create, share, contemplate and apply knowledge from multiple perspectives of user requirements (accessibility, maintainability, sustainability, acoustics, crime, energy simulation, scheduling, costing etc.). Thus taking the concept of 3-dimensional computer modelling of the built environment to an almost infinite number of dimensions, to cope with whole-life construction and asset management issues in the design of modern buildings. This paper reports on the development of a vision for how integrated environments that will allow nD-enabled construction and asset management to be undertaken. The project is funded by a four-year platform grant from the Engineering and Physical Sciences Research Council (EPSRC) in the UK; thus awarded to a multi-disciplinary research team, to enable flexibility in the research strategy and to produce leading innovation. This paper reports on the development of a business process and IT vision for how integrated environments will allow nD-enabled construction and asset management to be undertaken. It further develops many of the key issues of a future vision arising from previous CIB W78 conferences.
Resumo:
There is increased recognition that determinants of health should be investigated in a life-course perspective. Retirement is a major transition in the life course and offers opportunities for changes in physical activity that may improve health in the aging population. The authors examined the effect of retirement on changes in physical activity in the GLOBE Study, a prospective cohort study known by the Dutch acronym for "Health and Living Conditions of the Population of Eindhoven and surroundings," 1991–2004. They followed respondents (n = 971) by postal questionnaire who were employed and aged 40–65 years in 1991 for 13 years, after which they were still employed (n = 287) or had retired (n = 684). Physical activity included 1) work-related transportation, 2) sports participation, and 3) nonsports leisure-time physical activity. Multinomial logistic regression analyses indicated that retirement was associated with a significantly higher odds for a decline in physical activity from work-related transportation (odds ratio (OR) = 3.03, 95% confidence interval (CI): 1.97, 4.65), adjusted for sex, age, marital status, chronic diseases, and education, compared with remaining employed. Retirement was not associated with an increase in sports participation (OR = 1.12, 95% CI: 0.71, 1.75) or nonsports leisure-time physical activity (OR = 0.80, 95% CI: 0.54, 1.19). In conclusion, retirement introduces a reduction in physical activity from work-related transportation that is not compensated for by an increase in sports participation or an increase in nonsports leisure-time physical activity.
Resumo:
In recent years, the transport simulation of large road networks has become far more rapid and detailed, and many exciting developments in this field have emerged. In this perspective, the authors describe the simulation of automobile, pedestrian and rail traffic, coupled to new applications, such as the embedding of traffic simulation into driving simulators, to give a more realistic environment of driver behavior surrounding the subject vehicle.
Resumo:
“Hardware in the Loop” (HIL) testing is widely used in the automotive industry. The sophisticated electronic control units used for vehicle control are usually tested and evaluated using HIL-simulations. The HIL increases the degree of realistic testing of any system. Moreover, it helps in designing the structure and control of the system under test so that it works effectively in the situations that will be encountered in the system. Due to the size and the complexity of interaction within a power network, most research is based on pure simulation. To validate the performance of physical generator or protection system, most testing is constrained to very simple power network. This research, however, examines a method to test power system hardware within a complex virtual environment using the concept of the HIL. The HIL testing for electronic control units and power systems protection device can be easily performed at signal level. But performance of power systems equipments, such as distributed generation systems can not be evaluated at signal level using HIL testing. The HIL testing for power systems equipments is termed here as ‘Power Network in the Loop’ (PNIL). PNIL testing can only be performed at power level and requires a power amplifier that can amplify the simulation signal to the power level. A power network is divided in two parts. One part represents the Power Network Under Test (PNUT) and the other part represents the rest of the complex network. The complex network is simulated in real time simulator (RTS) while the PNUT is connected to the Voltage Source Converter (VSC) based power amplifier. Two way interaction between the simulator and amplifier is performed using analog to digital (A/D) and digital to analog (D/A) converters. The power amplifier amplifies the current or voltage signal of simulator to the power level and establishes the power level interaction between RTS and PNUT. In the first part of this thesis, design and control of a VSC based power amplifier that can amplify a broadband voltage signal is presented. A new Hybrid Discontinuous Control method is proposed for the amplifier. This amplifier can be used for several power systems applications. In the first part of the thesis, use of this amplifier in DSTATCOM and UPS applications are presented. In the later part of this thesis the solution of network in the loop testing with the help of this amplifier is reported. The experimental setup for PNIL testing is built in the laboratory of Queensland University of Technology and the feasibility of PNIL testing has been evaluated using the experimental studies. In the last section of this thesis a universal load with power regenerative capability is designed. This universal load is used to test the DG system using PNIL concepts. This thesis is composed of published/submitted papers that form the chapters in this dissertation. Each paper has been published or submitted during the period of candidature. Chapter 1 integrates all the papers to provide a coherent view of wide bandwidth switching amplifier and its used in different power systems applications specially for the solution of power systems testing using PNIL.
Resumo:
As teachers, we must know about the physical developmental processes our students are experiencing. These are reflected in behaviour, emotions and relationships. And for adolescents, who are trying hard to figure out how the world operates, the physical changes they experience have a potent impact on their world view. While the sequencing of much of our physical development is pretty well according to a grand template and rolls out in much the same way from one person to the next, not everything occurs in a set way (Richter, 2006). Some aspects of our physical development cause other things to occur and are tied together. For example, hormonal changes during puberty are tied to the development of secondary sexual characteristics. However, there is individual variation at multiple levels, and we will discuss these. To complicate things, adolescents’ feelings and ideas about themselves and the ways in which they interact with the world as they grow and change are coloured by our societies’ multifaceted sets of ideals, standards and expectations for physical development. Many other things also impact on our conceptions of self and these will be discussed when we turn our attention to the development of identity through adolescence. In this chapter we will present some basic information about the types of physical changes to expect during adolescence, and consider some challenges that confront adolescents during this time of development.
Resumo:
Aim: In the current climate of medical education, there is an ever-increasing demand for and emphasis on simulation as both a teaching and training tool. The objective of our study was to compare the realism and practicality of a number of artificial blood products that could be used for high-fidelity simulation. Method: A literature and internet search was performed and 15 artificial blood products were identified from a variety of sources. One product was excluded due to its potential toxicity risks. Five observers, blinded to the products, performed two assessments on each product using an evaluation tool with 14 predefined criteria including color, consistency, clotting, and staining potential to manikin skin and clothing. Each criterion was rated using a five-point Likert scale. The products were left for 24 hours, both refrigerated and at room temperature, and then reassessed. Statistical analysis was performed to identify the most suitable products, and both inter- and intra-rater variability were examined. Results: Three products scored consistently well with all five assessors, with one product in particular scoring well in almost every criterion. This highest-rated product had a mean rating of 3.6 of 5.0 (95% posterior Interval 3.4-3.7). Inter-rater variability was minor with average ratings varying from 3.0 to 3.4 between the highest and lowest scorer. Intrarater variability was negligible with good agreement between first and second rating as per weighted kappa scores (K = 0.67). Conclusion: The most realistic and practical form of artificial blood identified was a commercial product called KD151 Flowing Blood Syrup. It was found to be not only realistic in appearance but practical in terms of storage and stain removal.
Resumo:
This paper is a continuation of the paper titled “Concurrent multi-scale modeling of civil infrastructure for analyses on structural deteriorating—Part I: Modeling methodology and strategy” with the emphasis on model updating and verification for the developed concurrent multi-scale model. The sensitivity-based parameter updating method was applied and some important issues such as selection of reference data and model parameters, and model updating procedures on the multi-scale model were investigated based on the sensitivity analysis of the selected model parameters. The experimental modal data as well as static response in terms of component nominal stresses and hot-spot stresses at the concerned locations were used for dynamic response- and static response-oriented model updating, respectively. The updated multi-scale model was further verified to act as the baseline model which is assumed to be finite-element model closest to the real situation of the structure available for the subsequent arbitrary numerical simulation. The comparison of dynamic and static responses between the calculated results by the final model and measured data indicated the updating and verification methods applied in this paper are reliable and accurate for the multi-scale model of frame-like structure. The general procedures of multi-scale model updating and verification were finally proposed for nonlinear physical-based modeling of large civil infrastructure, and it was applied to the model verification of a long-span bridge as an actual engineering practice of the proposed procedures.
Resumo:
Scoliosis is a spinal deformity, involving a side-to-side curvature of the spine in the coronal plane as well as a rotation of the spinal column in the transverse plane. The coronal curvature is measured using a Cobb angle. If the deformity is severe, treatment for scoliosis may require surgical intervention whereby a rod is attached to the spinal column to correct the abnormal curvature. In order to provide surgeons with an improved ability to predict the likely outcomes following surgery, techniques to create patient-specific finite element models (FEM) of scoliosis patients treated at the Mater Children’s Hospital (MCH) in Brisbane are being developed and validated. This paper presents a comparison of the simulated and clinical data for a scoliosis patient treated at MCH.
Resumo:
The healing process for bone fractures is sensitive to mechanical stability and blood supply at the fracture site. Most currently available mechanobiological algorithms of bone healing are based solely on mechanical stimuli, while the explicit analysis of revascularization and its influences on the healing process have not been thoroughly investigated in the literature. In this paper, revascularization was described by two separate processes: angiogenesis and nutrition supply. The mathematical models for angiogenesis and nutrition supply have been proposed and integrated into an existing fuzzy algorithm of fracture healing. The computational algorithm of fracture healing, consisting of stress analysis, analyses of angiogenesis and nutrient supply, and tissue differentiation, has been tested on and compared with animal experimental results published previously. The simulation results showed that, for a small and medium-sized fracture gap, the nutrient supply is sufficient for bone healing, for a large fracture gap, non-union may be induced either by deficient nutrient supply or inadequate mechanical conditions. The comparisons with experimental results demonstrated that the improved computational algorithm is able to simulate a broad spectrum of fracture healing cases and to predict and explain delayed unions and non-union induced by large gap sizes and different mechanical conditions. The new algorithm will allow the simulation of more realistic clinical fracture healing cases with various fracture gaps and geometries and may be helpful to optimise implants and methods for fracture fixation.
Resumo:
Introduction: Bone mineral density (BMD) is currently the preferred surrogate for bone strength in clinical practice. Finite element analysis (FEA) is a computer simulation technique that can predict the deformation of a structure when a load is applied, providing a measure of stiffness (Nmm−1). Finite element analysis of X-ray images (3D-FEXI) is a FEA technique whose analysis is derived froma single 2D radiographic image. Methods: 18 excised human femora had previously been quantitative computed tomography scanned, from which 2D BMD-equivalent radiographic images were derived, and mechanically tested to failure in a stance-loading configuration. A 3D proximal femur shape was generated from each 2D radiographic image and used to construct 3D-FEA models. Results: The coefficient of determination (R2%) to predict failure load was 54.5% for BMD and 80.4% for 3D-FEXI. Conclusions: This ex vivo study demonstrates that 3D-FEXI derived from a conventional 2D radiographic image has the potential to significantly increase the accuracy of failure load assessment of the proximal femur compared with that currently achieved with BMD. This approach may be readily extended to routine clinical BMD images derived by dual energy X-ray absorptiometry. Crown Copyright © 2009 Published by Elsevier Ltd on behalf of IPEM. All rights reserved
Resumo:
Summary Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was warped to the size and shape of a single 2D radiographic image of a subject. Mean absolute depth errors are comparable with previous approaches utilising multiple 2D input projections. Introduction Several approaches have been adopted to derive volumetric density (g cm-3) from a conventional 2D representation of areal bone mineral density (BMD, g cm-2). Such approaches have generally aimed at deriving an average depth across the areal projection rather than creating a formal 3D shape of the bone. Methods Generalized Procrustes analysis and thin plate splines were employed to create an average 3D shape template of the proximal femur that was subsequently warped to suit the size and shape of a single 2D radiographic image of a subject. CT scans of excised human femora, 18 and 24 scanned at pixel resolutions of 1.08 mm and 0.674 mm, respectively, were equally split into training (created 3D shape template) and test cohorts. Results The mean absolute depth errors of 3.4 mm and 1.73 mm, respectively, for the two CT pixel sizes are comparable with previous approaches based upon multiple 2D input projections. Conclusions This technique has the potential to derive volumetric density from BMD and to facilitate 3D finite element analysis for prediction of the mechanical integrity of the proximal femur. It may further be applied to other anatomical bone sites such as the distal radius and lumbar spine.
Resumo:
Simulation is widely used as a tool for analyzing business processes but is mostly focused on examining abstract steady-state situations. Such analyses are helpful for the initial design of a business process but are less suitable for operational decision making and continuous improvement. Here we describe a simulation system for operational decision support in the context of workflow management. To do this we exploit not only the workflow’s design, but also use logged data describing the system’s observed historic behavior, and incorporate information extracted about the current state of the workflow. Making use of actual data capturing the current state and historic information allows our simulations to accurately predict potential near-future behaviors for different scenarios. The approach is supported by a practical toolset which combines and extends the workflow management system YAWL and the process mining framework ProM.
Resumo:
Objective: The study investigated previous research findings and clinical impressions which indicated that the intensity of grief for parents who had lost a child was likely to be higher than that for widows/widowers, who in turn were likely to have more intense reactions than adult children losing a parent. Method: In order to compare the intensities of the bereavement reactions among representative community samples of bereaved spouses (n = 44), adult children (n = 40) and parents (n = 36), and to follow the course of such phenomena, a detailed Bereavement Questionnaire was administered at four time points over a 13-month period following the loss. Results: Measures based on items central to the construct of bereavement showed significant time and group differences in accordance with the proposed hypothesis. More global items associated with the construct of resolution showed a significant time effect, but without significant group differences. Conclusions: Evidence from this study supports the hypothesis that in non-clinical, community-based populations the frequency with which core bereavement phenomena are experienced is in the order: bereaved parents bereaved spouses bereaved adult children.