175 resultados para parallel-machine
Resumo:
The ability to accurately predict the remaining useful life of machine components is critical for machine continuous operation, and can also improve productivity and enhance system safety. In condition-based maintenance (CBM), maintenance is performed based on information collected through condition monitoring and an assessment of the machine health. Effective diagnostics and prognostics are important aspects of CBM for maintenance engineers to schedule a repair and to acquire replacement components before the components actually fail. All machine components are subjected to degradation processes in real environments and they have certain failure characteristics which can be related to the operating conditions. This paper describes a technique for accurate assessment of the remnant life of machines based on health state probability estimation and involving historical knowledge embedded in the closed loop diagnostics and prognostics systems. The technique uses a Support Vector Machine (SVM) classifier as a tool for estimating health state probability of machine degradation, which can affect the accuracy of prediction. To validate the feasibility of the proposed model, real life historical data from bearings of High Pressure Liquefied Natural Gas (HP-LNG) pumps were analysed and used to obtain the optimal prediction of remaining useful life. The results obtained were very encouraging and showed that the proposed prognostic system based on health state probability estimation has the potential to be used as an estimation tool for remnant life prediction in industrial machinery.
Resumo:
This chapter is a tutorial that teaches you how to design extended finite state machine (EFSM) test models for a system that you want to test. EFSM models are more powerful and expressive than simple finite state machine (FSM) models, and are one of the most commonly used styles of models for model-based testing, especially for embedded systems. There are many languages and notations in use for writing EFSM models, but in this tutorial we write our EFSM models in the familiar Java programming language. To generate tests from these EFSM models we use ModelJUnit, which is an open-source tool that supports several stochastic test generation algorithms, and we also show how to write your own model-based testing tool. We show how EFSM models can be used for unit testing and system testing of embedded systems, and for offline testing as well as online testing.
Resumo:
Power system stabilizer (PSS) is one of the most important controllers in modern power systems for damping low frequency oscillations. Many efforts have been dedicated to design the tuning methodologies and allocation techniques to obtain optimal damping behaviors of the system. Traditionally, it is tuned mostly for local damping performance, however, in order to obtain a globally optimal performance, the tuning of PSS needs to be done considering more variables. Furthermore, with the enhancement of system interconnection and the increase of system complexity, new tools are required to achieve global tuning and coordination of PSS to achieve optimal solution in a global meaning. Differential evolution (DE) is a recognized as a simple and powerful global optimum technique, which can gain fast convergence speed as well as high computational efficiency. However, as many other evolutionary algorithms (EA), the premature of population restricts optimization capacity of DE. In this paper, a modified DE is proposed and applied for optimal PSS tuning of 39-Bus New-England system. New operators are introduced to reduce the probability of getting premature. To investigate the impact of system conditions on PSS tuning, multiple operating points will be studied. Simulation result is compared with standard DE and particle swarm optimization (PSO).
Resumo:
Advances in solid-state switches and power electronics techniques have led to the development of compact, efficient and more reliable pulsed power systems. Although, the power rating and operation speed of the new solid-state switches are considerably increased, their low blocking voltage level puts a limits in the pulsed power operation. This paper proposes the advantage of parallel and series configurations of pulsed power modules in obtaining high voltage levels with fast rise time (dv/dt) using only conventional switches. The proposed configuration is based on two flyback modules. The effectiveness of the proposed approach is verified by numerical simulations, and the advantages of each configuration are indicated in comparison with a single module.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
The parallel track model is one of the several models that are used in health promotion programmes that focus on community empowerment. It is unique in that it explicitly incorporates an empowerment approach with a top-down health programme. Since its development in 1999-2000 the model has been used in various health programmes in both developed and developing countries. The aim of this review is to examine the nature and extent of the application of this model and its contribution to promoting health. A review of the literature published between 2000 and 2011 was conducted. Nine results matched the inclusion criteria and revealed that the model has been mostly applied to disadvantaged communities to address health determinants, such as poverty and health literacy. This review found that the model had a positive impact on specific health outcomes such as health literacy and community capacity. We concluded that the parallel track model has the most potential for building capacity for community health promotion and appears to be the least useful for interventions focusing on health behaviour change within a limited time frame.
Resumo:
Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.
Resumo:
Instances of parallel ecotypic divergence where adaptation to similar conditions repeatedly cause similar phenotypic changes in closely related organisms are useful for studying the role of ecological selection in speciation. Here we used a combination of traditional and next generation genotyping techniques to test for the parallel divergence of plants from the Senecio lautus complex, a phenotypically variable groundsel that has adapted to disparate environments in the South Pacific. Phylogenetic analysis of a broad selection of Senecio species showed that members of the S. lautus complex form a distinct lineage that has diversified recently in Australasia. An inspection of thousands of polymorphisms in the genome of 27 natural populations from the S. lautus complex in Australia revealed a signal of strong genetic structure independent of habitat and phenotype. Additionally, genetic differentiation between populations was correlated with the geographical distance separating them, and the genetic diversity of populations strongly depended on geographical location. Importantly, coastal forms appeared in several independent phylogenetic clades, a pattern that is consistent with the parallel evolution of these forms. Analyses of the patterns of genomic differentiation between populations further revealed that adjacent populations displayed greater genomic heterogeneity than allopatric populations and are differentiated according to variation in soil composition. These results are consistent with a process of parallel ecotypic divergence in face of gene flow.
Resumo:
Parallel interleaved converters are finding more applications everyday, for example they are frequently used for VRMs on PC main boards mainly to obtain better transient response. Parallel interleaved converters can have their inductances uncoupled, directly coupled or inversely coupled, all of which have different applications with associated advantages and disadvantages. Coupled systems offer more control over converter features, such as ripple currents, inductance volume and transient response. To be able to gain an intuitive understanding of which type of parallel interleaved converter, what amount of coupling, what number of levels and how much inductance should be used for different applications a simple equivalent model is needed. As all phases of an interleaved converter are supposed to be identical, the equivalent model is nothing more than a separate inductance which is common to all phases. Without utilising this simplification the design of a coupled system is quite daunting. Being able to design a coupled system involves solving and understanding the RMS currents of the input, individual phase (or cell) and output. A procedure using this equivalent model and a small amount of modulo arithmetic is detailed.
Resumo:
Interleaved switching and coupled inductors are proven methods for reducing DC-DC converter output ripple. This paper furthers discussions of these techniques to arrangements of many buck converters connected in parallel. The different possible arrangements of the DC-DC converters are discussed and criteria for fair comparisons between them are chosen. The effects of interleaved switching on ripple values are presented and subsequent effects of coupling the inductors is then investigated. A generalised solution for current ripple in n coupled inductor converters is presented. Simulations are used to verify the solution and characterise the converter and output ripple for all configurations.
Resumo:
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Resumo:
This paper makes a case for thinking about the primary school as a logic machine (apparatus) as a way of thinking about processes of in-school stratification. Firstly we discuss related literature on in-school stratification in primary schools, particularly as it relates to literacy learning. Secondly we explain how school reform can be thought about in terms of the idea of the machine or apparatus. In which case the processes of in-school stratification can be mapped as more than simply concerns about school organisation (such as students grouping) but also involve a politics of truth, played out in each school, that constitutes school culture and what counts as ‘good’ pedagogy. Thirdly, the chapter will focus specifically on research conducted into primary schools in the Northern Suburbs of Adelaide, one of the most educationally disadvantaged regions in Australia, as a case study of the relationship between in-school stratification and the reproduction of inequality. We will draw from more than 20 years of ethnographic work in primary school in the northern suburbs of Adelaide and provide a snapshot of a recent attempt to improve literacy achievement in a few Northern Suburbs public primary schools (SILA project). The SILA project, through diagnostic reviews, has provided a significant analysis of the challenges facing policy and practice in such challenging school contexts that also maps onto existing (inter)national research. These diagnostic reviews said ‘hard things’ that required attention by SILA schools and these included: · an over reliance on whole class, low level, routine tasks and hence a lack of challenge and rigour in the learning tasks offered to students ; · a focus on the 'code breaking' function of language at the expense of richer conceptualisations of literacy that might guide teachers’ understanding of challenging pedagogies ; · the need for substantial shifts in the culture of schools, especially unsettling deficit views of students and their communities ; · a need to provide a more ‘consistent’ approach to teaching literacy across the school; · a need to focus School Improvement Plans in order to implement a clear focus on literacy learning; and, · a need to sustain professional learning to produce new knowledge and practice . The paper will conclude with suggestions for further research and possible reform projects into the primary school as a logic machine.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation in cloud computing. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NP-complete. Thus, in this paper we propose a new heuristic algorithm for the mappers/reducers placement problem in cloud computing and evaluate it by comparing with other several heuristics on solution quality and computation time by solving a set of test problems with various characteristics. The computational results show that our heuristic algorithm is much more efficient than the other heuristics and it can obtain a better solution in a reasonable time. Furthermore, we verify the effectiveness of our heuristic algorithm by comparing the mapper/reducer placement for a benchmark problem generated by our heuristic algorithm with a conventional mapper/reducer placement which puts a fixed number of mapper/reducer on each machine. The comparison results show that the computation using our mapper/reducer placement is much cheaper than the computation using the conventional placement while still satisfying the computation deadline.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.