167 resultados para obstacles
Resumo:
The absorptive capacity of organisations is one of the key drivers of innovation performance in any industry. This research seeks to refine our understanding of the relationship between absorptive capacity and innovation performance, with a focus on characterising the absorptive capacity of the different participant groups within the Australian road industry supply chain. One of the largest and most comprehensive surveys ever undertaken of innovation in road construction was completed in 2011 by the Queensland University of Technology (QUT), based on the Australian road industry. The survey of over 200 construction industry participants covered four sectors, comprising suppliers (manufacturers and distributors), consultants (engineering consultants), contractors (head and subcontractors) and clients (state government road agencies). The survey measured the absorptive capacity and innovation activity exhibited by organisations within each of these participant groups, using the perceived importance of addressing innovation obstacles as a proxy for innovation activity. One of the key findings of the survey is about the impact of participant competency on product innovation activity. The survey found that the absorptive capacity of industry participants had a significant and positive relationship with innovation activity. Regarding the distribution of absorptive capacity, the results indicate that suppliers are more likely to have high levels of absorptive capacity than the other participant groups, with 32% of suppliers showing high absorptive capacity, ahead of contractors (18%), consultants (11%), and clients (7%). These results support the findings of previous studies in the literature and suggest the importance of policies to enhance organisational learning, particularly in relation to openness to new product ideas.
Resumo:
Field robots often rely on laser range finders (LRFs) to detect obstacles and navigate autonomously. Despite recent progress in sensing technology and perception algorithms, adverse environmental conditions, such as the presence of smoke, remain a challenging issue for these robots. In this paper, we investigate the possibility to improve laser-based perception applications by anticipating situations when laser data are affected by smoke, using supervised learning and state-of-the-art visual image quality analysis. We propose to train a k-nearest-neighbour (kNN) classifier to recognise situations where a laser scan is likely to be affected by smoke, based on visual data quality features. This method is evaluated experimentally using a mobile robot equipped with LRFs and a visual camera. The strengths and limitations of the technique are identified and discussed, and we show that the method is beneficial if conservative decisions are the most appropriate.
Resumo:
Operating in vegetated environments is a major challenge for autonomous robots. Obstacle detection based only on geometric features causes the robot to consider foliage, for example, small grass tussocks that could be easily driven through, as obstacles. Classifying vegetation does not solve this problem since there might be an obstacle hidden behind the vegetation. In addition, dense vegetation typically needs to be considered as an obstacle. This paper addresses this problem by augmenting probabilistic traversability map constructed from laser data with ultra-wideband radar measurements. An adaptive detection threshold and a probabilistic sensor model are developed to convert the radar data to occupancy probabilities. The resulting map captures the fine resolution of the laser map but clears areas from the traversability map that are induced by obstacle-free foliage. Experimental results validate that this method is able to improve the accuracy of traversability maps in vegetated environments.
Resumo:
This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.
Resumo:
This paper describes a novel optimum path planning strategy for long duration AUV operations in environments with time-varying ocean currents. These currents can exceed the maximum achievable speed of the AUV, as well as temporally expose obstacles. In contrast to most other path planning strategies, paths have to be defined in time as well as space. The solution described here exploits ocean currents to achieve mission goals with minimal energy expenditure, or a tradeoff between mission time and required energy. The proposed algorithm uses a parallel swarm search as a means to reduce the susceptibility to large local minima on the complex cost surface. The performance of the optimisation algorithms is evaluated in simulation and experimentally with the Starbug AUV using a validated ocean model of Brisbane’s Moreton Bay.
Resumo:
Introduction Delirium research in palliative care, particularly in the dying phase, is possible but is frequently met with ethical and methodological challenges. This paper describes the challenges faced in a previous delirium screening study. Methods Within 72 hours of admission to an acute inpatient specialist palliative care unit one hundred consecutive patients over 18 years of age with advanced cancer were invited to be screened for delirium using validated screening tools. Results Of the 100 consecutive admissions 49 patients were unable to participate including seven who did not meet the inclusion criteria and nine (six families and three patients) who withheld consent. The remaining 33 patients were more unwell and closer to death than those who were recruited. Reasons for non- participation included being too unwell (ten), unresponsive (nine), died (two) or discharged (three) before recruitment and exceeding the 72hour time limit (nine). Conclusion Gate keeping and physical condition of patients were the main obstacles to recruitment and is consistent with barriers faced in previous studies involving palliative care and dying patients. While it is possible and necessary to conduct studies in palliative care, including the terminal phase, as reflective practitioners we must maintain the balance between the demands for evidence-based practice and our compassion and respect for our most vulnerable of patients.
Resumo:
This paper describes the development of small low-cost cooperative robots for sustainable broad-acre agriculture to increase broad-acre crop production and reduce environmental impact. The current focus of the project is to use robotics to deal with resistant weeds, a critical problem for Australian farmers. To keep the overall system affordable our robot uses low-cost cameras and positioning sensors to perform a large scale coverage task while also avoiding obstacles. A multi-robot coordinator assigns parts of a given field to individual robots. The paper describes the modification of an electric vehicle for autonomy and experimental results from one real robot and twelve simulated robots working in coordination for approximately two hours on a 55 hectare field in Emerald Australia. Over this time the real robot 'sprayed' 6 hectares missing 2.6% and overlapping 9.7% within its assigned field partition, and successfully avoided three obstacles.
Resumo:
Cryptosystems based on the hardness of lattice problems have recently acquired much importance due to their average-case to worst-case equivalence, their conjectured resistance to quantum cryptanalysis, their ease of implementation and increasing practicality, and, lately, their promising potential as a platform for constructing advanced functionalities. In this work, we construct “Fuzzy” Identity Based Encryption from the hardness of the Learning With Errors (LWE) problem. We note that for our parameters, the underlying lattice problems (such as gapSVP or SIVP) are assumed to be hard to approximate within supexponential factors for adversaries running in subexponential time. We give CPA and CCA secure variants of our construction, for small and large universes of attributes. All our constructions are secure against selective-identity attacks in the standard model. Our construction is made possible by observing certain special properties that secret sharing schemes need to satisfy in order to be useful for Fuzzy IBE. We also discuss some obstacles towards realizing lattice-based attribute-based encryption (ABE).
Resumo:
This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz–3 kHz) and low frequency field potentials (4 Hz–3 kHz). Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m.
Resumo:
This paper describes a novel obstacle detection system for autonomous robots in agricultural field environments that uses a novelty detector to inform stereo matching. Stereo vision alone erroneously detects obstacles in environments with ambiguous appearance and ground plane such as in broad-acre crop fields with harvested crop residue. The novelty detector estimates the probability density in image descriptor space and incorporates image-space positional understanding to identify potential regions for obstacle detection using dense stereo matching. The results demonstrate that the system is able to detect obstacles typical to a farm at day and night. This system was successfully used as the sole means of obstacle detection for an autonomous robot performing a long term two hour coverage task travelling 8.5 km.
Resumo:
Repair, maintenance, minor alteration, and addition work (RMAA) has become more and more important in developed societies, but its safety performance is alarming. For example, RMAA projects accounted for 53.2% of the total construction market and the percentage of RMAA accidents to all construction accidents in the Hong Kong Special Administrative Region (HKSAR) increased considerably in 2007. The RMAA sector has a huge potential for safety improvement. This study aims to explore and evaluate the difficulties of implementing safety practices in RMAA work. The mixed methods approach was adopted, and semistructured interviews and a two-round Delphi survey were conducted for the data collection. Major difficulties were identified, including limited safety resources for small and medium enterprises (SMEs), difficulty in changing the mindset of RMAA workers, and difficulty in performing safety supervision. These obstacles for implementing safety practices in the RMAA sector, if successfully removed, could significantly improve the safety performance of the RMAA sector and the construction industry as a whole.
Resumo:
As the biggest expo site in history, construction of the Shanghai Expo site faced a lot of challenges, including involvement of lots of investors, megaconstruction scale, concurrent construction mode, involvement of more than 40,000 migrant workers, and extremely tight completion deadlines, among others. Consequently, these challenges imposed great obstacles on accomplishing the safety, quality, and environmental goals. Through a case study of the Shanghai Expo construction, this paper paper presents the design and implementation of multicriteria incentives in megaprojects to accomplish the safety, quality, and environmental goals. Both quantitative and qualitative findings were triangulated to demonstrate the outcome of the incentives. Six critical success factors (CSFs) for the incentives, rule design, process orientation, top management support, training and promotion, communication in process, and process learning and improvement are identified and validated through case study data and content analysis. It is believed that the findings of this paper can enhance understanding of multicriteria incentive schemes in general and provide insights in implementing these incentive schemes in future megaprojects, particularly in the People’s Republic of China (PRC).
Resumo:
Section 180 of the Property Law Act 1974 (Qld) makes provision for an applicant to seek a statutory right of user over a neighbour’s property where such right of use is reasonably necessary in the interests of effective use in any reasonable manner of the dominant land. In recent years, the Queensland courts have been confronted with a number of such applications. Litigation has also been common in New South Wales which has a statutory provision in largely similar terms. This article seeks to identify those factors that have underpinned successful applications, the obstacles that an applicant may encounter and the considerations that have guided the courts when considering the associated issues of compensation and costs.
Resumo:
A commitment in 2010 by the Australian Federal Government to spend $466.7 million dollars on the implementation of personally controlled electronic health records (PCEHR) heralded a shift to a more effective and safer patient centric eHealth system. However, deployment of the PCEHR has met with much criticism, emphasised by poor adoption rates over the first 12 months of operation. An indifferent response by the public and healthcare providers largely sceptical of its utility and safety speaks to the complex sociotechnical drivers and obstacles inherent in the embedding of large (national) scale eHealth projects. With government efforts to inflate consumer and practitioner engagement numbers giving rise to further consumer disillusionment, broader utilitarian opportunities available with the PCEHR are at risk. This paper discusses the implications of establishing the PCEHR as the cornerstone of a holistic eHealth strategy for the aggregation of longitudinal patient information. A viewpoint is offered that the real value in patient data lies not just in the collection of data but in the integration of this information into clinical processes within the framework of a commoditised data-driven approach. Consideration is given to the eHealth-as-a-Service (eHaaS) construct as a disruptive next step for co-ordinated individualised healthcare in the Australian context.
Resumo:
Content-creation spaces, or ‘makerspaces’, are an emerging phenomenon in public libraries worldwide. This study investigated the current state of makerspaces in Australian public libraries. Qualitative interviews with three information professionals formed the data collection. Thematic analysis of interviews addressed two research questions: What are the issues and challenges of creating makerspaces within Australian public libraries? How can they be addressed? Findings revealed the substantive benefits of these spaces, including enhanced community engagement, development of a new form of library as ‘third place’, and transforming the library's image from that of a place where works are consumed to that of a place where works are created. Additionally the study highlighted significant challenges to creating these spaces, including budgetary constraints, resistance to change within organisations and proving the relevance of such spaces within a library context. The study provides suggestions for overcoming these obstacles and provides areas for further research in the area, including larger studies across a broader geographic area and further investigation and follow-up into upcoming programs within existing makerspaces.