166 resultados para model-based security management
Resumo:
Many infrastructure and necessity systems such as electricity and telecommunication in Europe and the Northern America were used to be operated as monopolies, if not state-owned. However, they have now been disintegrated into a group of smaller companies managed by different stakeholders. Railways are no exceptions. Since the early 1980s, there have been reforms in the shape of restructuring of the national railways in different parts of the world. Continuous refinements are still conducted to allow better utilisation of railway resources and quality of service. There has been a growing interest for the industry to understand the impacts of these reforms on the operation efficiency and constraints. A number of post-evaluations have been conducted by analysing the performance of the stakeholders on their profits (Crompton and Jupe 2003), quality of train service (Shaw 2001) and engineering operations (Watson 2001). Results from these studies are valuable for future improvement in the system, followed by a new cycle of post-evaluations. However, direct implementation of these changes is often costly and the consequences take a long period of time (e.g. years) to surface. With the advance of fast computing technologies, computer simulation is a cost-effective means to evaluate a hypothetical change in a system prior to actual implementation. For example, simulation suites have been developed to study a variety of traffic control strategies according to sophisticated models of train dynamics, traction and power systems (Goodman, Siu and Ho 1998, Ho and Yeung 2001). Unfortunately, under the restructured railway environment, it is by no means easy to model the complex behaviour of the stakeholders and the interactions between them. Multi-agent system (MAS) is a recently developed modelling technique which may be useful in assisting the railway industry to conduct simulations on the restructured railway system. In MAS, a real-world entity is modelled as a software agent that is autonomous, reactive to changes, able to initiate proactive actions and social communicative acts. It has been applied in the areas of supply-chain management processes (García-Flores, Wang and Goltz 2000, Jennings et al. 2000a, b) and e-commerce activities (Au, Ngai and Parameswaran 2003, Liu and You 2003), in which the objectives and behaviour of the buyers and sellers are captured by software agents. It is therefore beneficial to investigate the suitability or feasibility of applying agent modelling in railways and the extent to which it might help in developing better resource management strategies. This paper sets out to examine the benefits of using MAS to model the resource management process in railways. Section 2 first describes the business environment after the railway 2 Modelling issues on the railway resource management process using MAS reforms. Then the problems emerge from the restructuring process are identified in section 3. Section 4 describes the realisation of a MAS for railway resource management under the restructured scheme and the feasible studies expected from the model.
Resumo:
Wireless network technologies, such as IEEE 802.11 based wireless local area networks (WLANs), have been adopted in wireless networked control systems (WNCS) for real-time applications. Distributed real-time control requires satisfaction of (soft) real-time performance from the underlying networks for delivery of real-time traffic. However, IEEE 802.11 networks are not designed for WNCS applications. They neither inherently provide quality-of-service (QoS) support, nor explicitly consider the characteristics of the real-time traffic on networked control systems (NCS), i.e., periodic round-trip traffic. Therefore, the adoption of 802.11 networks in real-time WNCSs causes challenging problems for network design and performance analysis. Theoretical methodologies are yet to be developed for computing the best achievable WNCS network performance under the constraints of real-time control requirements. Focusing on IEEE 802.11 distributed coordination function (DCF) based WNCSs, this paper analyses several important NCS network performance indices, such as throughput capacity, round trip time and packet loss ratio under the periodic round trip traffic pattern, a unique feature of typical NCSs. Considering periodic round trip traffic, an analytical model based on Markov chain theory is developed for deriving these performance indices under a critical real-time traffic condition, at which the real-time performance constraints are marginally satisfied. Case studies are also carried out to validate the theoretical development.
Resumo:
Process modeling is a central element in any approach to Business Process Management (BPM). However, what hinders both practitioners and academics is the lack of support for assessing the quality of process models – let alone realizing high quality process models. Existing frameworks are highly conceptual or too general. At the same time, various techniques, tools, and research results are available that cover fragments of the issue at hand. This chapter presents the SIQ framework that on the one hand integrates concepts and guidelines from existing ones and on the other links these concepts to current research in the BPM domain. Three different types of quality are distinguished and for each of these levels concrete metrics, available tools, and guidelines will be provided. While the basis of the SIQ framework is thought to be rather robust, its external pointers can be updated with newer insights as they emerge.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
Background: It remains unclear whether it is possible to develop a spatiotemporal epidemic prediction model for cryptosporidiosis disease. This paper examined the impact of social economic and weather factors on cryptosporidiosis and explored the possibility of developing such a model using social economic and weather data in Queensland, Australia. ----- ----- Methods: Data on weather variables, notified cryptosporidiosis cases and social economic factors in Queensland were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Three-stage spatiotemporal classification and regression tree (CART) models were developed to examine the association between social economic and weather factors and monthly incidence of cryptosporidiosis in Queensland, Australia. The spatiotemporal CART model was used for predicting the outbreak of cryptosporidiosis in Queensland, Australia. ----- ----- Results: The results of the classification tree model (with incidence rates defined as binary presence/absence) showed that there was an 87% chance of an occurrence of cryptosporidiosis in a local government area (LGA) if the socio-economic index for the area (SEIFA) exceeded 1021, while the results of regression tree model (based on non-zero incidence rates) show when SEIFA was between 892 and 945, and temperature exceeded 32°C, the relative risk (RR) of cryptosporidiosis was 3.9 (mean morbidity: 390.6/100,000, standard deviation (SD): 310.5), compared to monthly average incidence of cryptosporidiosis. When SEIFA was less than 892 the RR of cryptosporidiosis was 4.3 (mean morbidity: 426.8/100,000, SD: 319.2). A prediction map for the cryptosporidiosis outbreak was made according to the outputs of spatiotemporal CART models. ----- ----- Conclusions: The results of this study suggest that spatiotemporal CART models based on social economic and weather variables can be used for predicting the outbreak of cryptosporidiosis in Queensland, Australia.
Resumo:
Scientists need to transfer semantically similar queries across multiple heterogeneous linked datasets. These queries may require data from different locations and the results are not simple to combine due to differences between datasets. A query model was developed to make it simple to distribute queries across different datasets using RDF as the result format. The query model, based on the concept of publicly recognised namespaces for parts of each scientific dataset, was implemented with a configuration that includes a large number of current biological and chemical datasets. The configuration is flexible, providing the ability to transparently use both private and public datasets in any query. A prototype implementation of the model was used to resolve queries for the Bio2RDF website, including both Bio2RDF datasets and other datasets that do not follow the Bio2RDF URI conventions.
Resumo:
In the scope of this study, ‘performance measurement’ includes the collection and presentation of relevant information that reflects progress in achieving organisational strategic aims and meeting the needs of stakeholders such as merchants, importers, exporters and other clients. Evidence shows that utilising information technology (IT) in customs matters supports import and export practices and ensures that supply chain management flows seamlessly. This paper briefly reviews some practical techniques for measuring performance. Its aim is to recommend a model for measuring the performance of information systems (IS): in this case, the Customs Information System (CIS) used by the Royal Malaysian Customs Department (RMCD).The study evaluates the effectiveness of CIS implementation measures in Malaysia from an IT perspective. A model based on IS theories will be used to assess the impact of CIS. The findings of this study recommend measures for evaluating the performance of CIS and its organisational impacts in Malaysia. It is also hoped that the results of the study will assist other Customs administrations evaluate the performance of their information systems.
Resumo:
This article examined the relationship between time structure and Macan's process model of time management. This study proposed that time structure—‘appraisal of effective time usage’—would be a more parsimonious mediator than perceived control over time in the relationship between time management behaviours and outcome variables, such as job satisfaction and psychological well-being. Alternative structure models were compared using a sample of 111 university students. Model 1 tested Macan's process model of time management with perceived control over time as the mediator. Model 2 replaced perceived control over time by the construct of time structure. Model 3 examined the possibility of perceived control over time and time structure as being parallel mediators of the relationships between time management and outcomes. Results of this study showed that Model 1 and Model 2 fitted the data equally well. On the other hand, the mediated effects were small and partial in both models. This pattern of results calls for reassessment of the process model.
Resumo:
The need to develop effective and efficient training programs has been recognised by all sectors engaged in training. In responding to the above need, focus has been directed to developing good competency statements and performance indicators to measure the outcomes. Very little has been done to understand how the competency statements get translated into good performance. To conceptualise this translation process, a representational model based on an information processing paradigm is proposed and discussed. It is argued that learners’ prior knowledge and the effectiveness of the instructional material are two variables that have significant bearing on how effectively the competency knowledge is translated into outcomes. To contextualise the model examples from apprentice training are used.
Resumo:
A stage model for knowledge management systems in policing financial crime is developed in this paper. Stages of growth models enable identification of organizational maturity and direction. Information technology to support knowledge work of police officers is improving. For example, new information systems supporting police investigations are evolving. Police investigation is an information-rich and knowledge-intensive practice. Its success depends on turning information into evidence. This paper presents an organizing framework for knowledge management systems in policing financial crime. Future case studies will empirically have to illustrate and validate the stage hypothesis developed in this paper.
Resumo:
This paper presents a group maintenance scheduling case study for a water distributed network. This water pipeline network presents the challenge of maintaining aging pipelines with the associated increases in annual maintenance costs. The case study focuses on developing an effective maintenance plan for the water utility. Current replacement planning is difficult as it needs to balance the replacement needs under limited budgets. A Maintenance Grouping Optimization (MGO) model based on a modified genetic algorithm was utilized to develop an optimum group maintenance schedule over a 20-year cycle. The adjacent geographical distribution of pipelines was used as a grouping criterion to control the searching space of the MGO model through a Judgment Matrix. Based on the optimum group maintenance schedule, the total cost was effectively reduced compared with the schedules without grouping maintenance jobs. This optimum result can be used as a guidance to optimize the current maintenance plan for the water utility.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
This paper proposes a model-based technique for lowering the entrance barrier for service providers to register services with a marketplace broker, such that the service is rapidly configured to utilize the brokerpsilas local service delivery management components. Specifically, it uses process modeling for supporting the execution steps of a service and shows how service delivery functions (e.g. payment points) ldquolocalrdquo to a service broker can be correctly configured into the process model. By formalizing the different operations in a service delivery function (like payment or settlement) and their allowable execution sequences (full payments must follow partial payments), including cross-function dependencies, it shows how through tool support, the non-technical user can quickly configure service delivery functions in a consistent and complete way.
Resumo:
Purpose. To create a binocular statistical eye model based on previously measured ocular biometric data. Methods. Thirty-nine parameters were determined for a group of 127 healthy subjects (37 male, 90 female; 96.8% Caucasian) with an average age of 39.9 ± 12.2 years and spherical equivalent refraction of −0.98 ± 1.77 D. These parameters described the biometry of both eyes and the subjects' age. Missing parameters were complemented by data from a previously published study. After confirmation of the Gaussian shape of their distributions, these parameters were used to calculate their mean and covariance matrices. These matrices were then used to calculate a multivariate Gaussian distribution. From this, an amount of random biometric data could be generated, which were then randomly selected to create a realistic population of random eyes. Results. All parameters had Gaussian distributions, with the exception of the parameters that describe total refraction (i.e., three parameters per eye). After these non-Gaussian parameters were omitted from the model, the generated data were found to be statistically indistinguishable from the original data for the remaining 33 parameters (TOST [two one-sided t tests]; P < 0.01). Parameters derived from the generated data were also significantly indistinguishable from those calculated with the original data (P > 0.05). The only exception to this was the lens refractive index, for which the generated data had a significantly larger SD. Conclusions. A statistical eye model can describe the biometric variations found in a population and is a useful addition to the classic eye models.
Resumo:
Purpose: The purpose of this paper is to clarify how end-users’ tacit knowledge can be captured and integrated in an overall business process management (BPM) approach. Current approaches to support stakeholders’ collaboration in the modelling of business processes envision an egalitarian environment where stakeholders interact in the same context, using the same languages and sharing the same perspectives on the business process. Therefore, such stakeholders have to collaborate in the context of process modelling using a language that some of them do not master, and have to integrate their various perspectives. Design/methodology/approach: The paper applies the SECI knowledge management process to analyse the problems of traditional top-down BPM approaches and BPM collaborative modelling tools. Besides, the SECI model is also applied to Wikipedia, a successful Web 2.0-based knowledge management environment, to identify how tacit knowledge is captured in a bottom-up approach. Findings – The paper identifies a set of requirements for a hybrid BPM approach, both top-down and bottom-up, and describes a new BPM method based on a stepwise discovery of knowledge. Originality/value: This new approach, Processpedia, enhances collaborative modelling among stakeholders without enforcing egalitarianism. In Processpedia tacit knowledge is captured and standardised into the organisation’s business processes by fostering an ecological participation of all the stakeholders and capitalising on stakeholders’ distinctive characteristics.