123 resultados para low carbon economy.
Resumo:
Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.
Resumo:
Self-assembly of carbon nanotip (CNTP) structures on Ni-based catalyst in chemically active inductively coupled plasmas of CH 4 + H 2 + Ar gas mixtures is reported. By varying the process conditions, it appears possible to control the shape, size, and density of CNTPs, content of the nanocrystalline phase in the films, as well as to achieve excellent crystallinity, graphitization, uniformity and vertical alignment of the resulting nanostructures at substrate temperatures 300-500°C and low gas pressures (below 13.2 Pa). This study provides a simple and efficient plasma-enhanced chemical vapor deposition (PECVD) technique for the fabrication of vertically aligned CNTP arrays for electron field emitters.
Resumo:
We present a theoretical model describing a plasma-assisted growth of carbon nanofibers (CNFs), which involves two competing channels of carbon incorporation into stacked graphene sheets: via surface diffusion and through the bulk of the catalyst particle (on the top of the nanofiber), accounting for a range of ion- and radical-assisted processes on the catalyst surface. Using this model, it is found that at low surface temperatures, Ts, the CNF growth is indeed controlled by surface diffusion, thus quantifying the semiempirical conclusions of earlier experiments. On the other hand, both the surface and bulk diffusion channels provide a comparable supply of carbon atoms to the stacked graphene sheets at elevated synthesis temperatures. It is also shown that at low Ts, insufficient for effective catalytic precursor decomposition, the plasma ions play a key role in the production of carbon atoms on the catalyst surface. The model is used to compute the growth rates for the two extreme cases of thermal and plasma-enhanced chemical vapor deposition of CNFs. More importantly, these results quantify and explain a number of observations and semiempirical conclusions of earlier experiments.
Resumo:
A simple, fast and low-cost atmospheric-pressure chemical vapor deposition technique is developed to synthesize high-yield carbon nanocoils (CNCs) using amorphous Co–P alloy as catalyst and thiophene as nucleation agent. The uniform catalyst pattern with the mean particle size of 350 nm was synthesized using a simple electroless plating process. This uniformity of the Co–P nanoparticles results in a high yield, very uniform size/shape distribution and regular structure of CNCs at the optimum growth temperature of 800 ◦C. The yield of CNCs reaches ∼76%; 70% of the CNCs have fiber diameters approximately 250 nm. The CNC coil diameters and lengths are 450–550nm and 0.5–2mm, respectively. The CNC nucleation and growth mechanism are also discussed.
Resumo:
The axial coefficients of thermal expansion (CTE) of various carbon nanotubes (CNTs), i.e., single-wall carbon nanotubes (SWCNTs), and some multi-wall carbon nanotubes (MWCNTs), were predicted using molecular dynamics (MDs) simulations. The effects of two parameters, i.e., temperature and the CNT diameter, on CTE were investigated extensively. For all SWCNTs and MWCNTs, the obtained results clearly revealed that within a wide low temperature range, their axial CTEs are negative. As the diameter of CNTs decreases, this temperature range for negative axial CTEs becomes narrow, and positive axial CTEs appear in high temperature range. It was found that the axial CTEs vary nonlinearly with the temperature, however, they decrease linearly as the CNT diameter increases. Moreover, within a wide temperature range, a set of empirical formulations was proposed for evaluating the axial CTEs of armchair and zigzag SWCNTs using the above two parameters. Finally, it was found that the absolute value of the negative axial CTE of any MWCNT is much smaller than those of its constituent SWCNTs, and the average value of the CTEs of its constituent SWCNTs. The present fundamental study is very important for understanding the thermal behaviors of CNTs in such as nanocomposite temperature sensors, or nanoelectronics devices using CNTs.
Resumo:
We propose a productivity index for undesirable outputs such as carbon dioxide (CO2) and sulfur dioxide (SO2) emissions and measure it using data from 51 developed and developing countries over the period 1971-2000. About half of the countries exhibit the productivity growth. The changes in the productivity index are linked with their respective per capita income using a semi-parametric model. Our results show technological catch up of low-income countries. However, overall productivities both of SO2 and CO2 show somewhat different results.
Resumo:
Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).
Resumo:
Fear-related illnesses such as post-traumatic stress disorder (PTSD) impose a tremendous burden on individual quality of life, families, and the national economy. In the military population, 17-20% of services members returning from deployment are diagnosed with PTSD. While treatments have improved for PTSD and are helpful for some, many people continue to suffer despite therapy. The aim of this research is to examine fear memory behaviourally and at the cellular level in the amygdala by using a unique inter-cross strain of high and low fear phenotype mice. An extended outcross C57BL/6J x DBA/2J (F8) are selected for high or low Pavlovian fear memory to context and cue. On presentation of either the original learning context or the cue (tone) mice display high or low levels of freezing as a behavioural measure of fear. In order to identify key aspects of the cellular basis of this difference in fear memory behaviour we are making measurements of protein levels and neuron numbers of a known pathway involved in the consolidation of a long term fear memory (pMAPK). Ongoing studies aim to determine if high fear behaviour is associated with differential signalling in the lateral amygdala compared to low fear behaviour. Additionally, by blocking this pathway in the lateral amygdala (LA), we aim to reduce fear behaviour following Pavlovian fear conditioning. This research will help to unravel the cellular mechanisms underlying high fear behaviour and advance the field toward targeted treatment and improved outcomes, ultimately improving human quality of life.
Resumo:
Synthesis of high quality boron carbide (B4C) powders is achieved by carbothermal reduction of boron oxide (B2O3) from a condensed boric acid (H3BO3)/polyvinyl acetate (PVAc) product. Precursor solutions are prepared via free radical polymerisation of vinyl acetate (VA) monomer in methanol in the presence of dissolved H3BO3. A condensed product is then formed by flash evaporation under vacuum. As excess VA monomer is removed at the evaporation step, the polymerisation time is used to manage availability of carbon for reaction. This control of carbon facilitates dispersion of H3BO3 in solution due to the presence of residual VA monomer. B4C powders with very low residual carbon are formed at temperatures as low as 1,250 °C with a 4 hour residence time.
Resumo:
Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/squ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.
Resumo:
A roll-to-roll compatible, high throughput process is reported for the production of highly conductive, transparent planar electrode comprising an interwoven network of silver nanowires and single walled carbon nanotubes imbedded into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The planar electrode has a sheet resistance of between 4 and 7 Ω □−1 and a transmission of >86% between 800 and 400 nm with a figure of merit of between 344 and 400 Ω−1. The nanocomposite electrode is highly flexible and retains a low sheet resistance after bending at a radius of 5 mm for up to 500 times without loss. Organic photovoltaic devices containing the planar nanocomposite electrodes had efficiencies of ∼90% of control devices that used indium tin oxide as the transparent conducting electrode.
Resumo:
Nowadays Solar Cooling systems are becoming popular to reduce the carbon footprint of air conditioning. The use of an absorption chiller connected to solar thermal panels is increasing, but little study has been carried out to assess the advantage of join together an absorption chiller and a desiccant wheel to remove the sensible heat and the latent heat in different ways than the current design adopted in the industry. In this work I assess the possibility of implement a desiccant wheel in a conventional solar cooling system and the possibility of recovering the heat rejected by the absorption chiller which is then used for the regeneration of the desiccant wheel. The implementation of a desiccant wheel and the recovery of the heat rejected could provide a significant energy saving when compared to traditional solar cooling system. The results assist in the practical development of a solar cooling system which simultaneously uses absorption and adsorption technology.
Resumo:
The enhanced large-scale model and numerical simulations are used to clarify the growth mechanism and the differences between the plasma- and neutral gas-grown carbon nanotubes, and to reveal the underlying physics and the key growth parameters. The results show that the nanotubes grown by plasma can be longer due to the effects of hydrocarbon ions with velocities aligned with the nanotubes. We show that the low-temperature growth is possible when the hydrocarbon ion flux dominates over fluxes of other species. We have also analysed the dependencies of the nanotube growth rates on nanotube and process parameters. The results are verified by a direct comparison with the experimental data. The model is generic and can be used for other types of carbon nanostructures such as carbon nanowalls, vertical graphenes, etc.
Resumo:
Carbon nanostructures (CNs) are amongst the most promising biorecognition nanomaterials due to their unprecedented optical, electrical and structural properties. As such, CNs may be harnessed to tackle the detrimental public health and socio-economic adversities associated with neurodegenerative diseases (NDs). In particular, CNs may be tailored for a specific determination of biomarkers indicative of NDs. However, the realization of such a biosensor represents a significant technological challenge in the uniform fabrication of CNs with outstanding qualities in order to facilitate a highly-sensitive detection of biomarkers suspended in complex biological environments. Notably, the versatility of plasma-based techniques for the synthesis and surface modification of CNs may be embraced to optimize the biorecognition performance and capabilities. This review surveys the recent advances in CN-based biosensors, and highlights the benefits of plasma-processing techniques to enable, enhance, and tailor the performance and optimize the fabrication of CNs, towards the construction of biosensors with unparalleled performance for the early diagnosis of NDs, via a plethora of energy-efficient, environmentally-benign, and inexpensive approaches.
Resumo:
Simple, rapid, plasma-assisted synthesis of large-area arrays of vertically-aligned carbon nanowalls on highly-porous, transparent bare and gold-coated alumina membranes with the two pore sizes is reported. It is demonstrated that the complex patterns of vertically aligned nanowalls can nucleate and form different morphologies in the low-temperature plasmas. The process is stable, and the twofold change in the gas flow (10 and 20 sccm) does not noticeably influence the morphology of the nanowall pattern. Application of a thin (5 nm) gold layer to nanoporous membrane prior to the nanowall growth allows controlling the network morphology.