344 resultados para intelligent speed adaptation
Resumo:
This paper argues a model of open systems evolution based on evolutionary thermodynamics and complex system science, as a design paradigm for sustainable architecture. The mechanism of open system evolution is specified in mathematical simulations and theoretical discourses. According to the mechanism, the authors propose an intelligent building model of sustainable design by a holistic information system of the end-users, the building and nature. This information system is used to control the consumption of energy and material resources in building system at microscopic scale, to adapt the environmental performance of the building system to the natural environment at macroscopic scale, for an evolutionary emergence of sustainable performance of buildings.
Resumo:
This article discusses the interaction between original and adaptation in the fashion system; the study also analyses, at a micro level, practices of adaptation adopted by consumers when making and re-making fashionable clothes. The article shows that the distinction between original and copy is historically determined as it grew out of the romantic notion of the authentic work of art. This article suggests that, in the impossibility to determine copyright in fashion, adaptation is a better descriptor of practices that transform garments; the concept of adaptation also abolishes trite notions of fashion as pastiche or bricolage, arguing for as a way to look at the many variations and re-contextualisations of garments historically and cross-culturally.
Resumo:
The city of Scottsdale Arizona implemented the first fixed photo Speed Enforcement camera demonstration Program (SEP) on a US freeway in 2006. A comprehensive before-and-after analysis of the impact of the SEP on safety revealed significant reductions in crash frequency and severity, which indicates that the SEP is a promising countermeasure for improving safety. However, there is often a trade off between safety and mobility when safety investments are considered. As a result, identifying safety countermeasures that both improve safety and reduce Travel Time Variability (TTV) is a desirable goal for traffic safety engineers. This paper reports on the analysis of the mobility impacts of the SEP by simulating the traffic network with and without the SEP, calibrated to real world conditions. The simulation results show that the SEP decreased the TTV: the risk of unreliable travel was at least 23% higher in the ‘without SEP’ scenario than in the ‘with SEP’ scenario. In addition, the total Travel Time Savings (TTS) from the SEP was estimated to be at least ‘569 vehicle-hours/year.’ Consequently, the SEP is an efficient countermeasure not only for reducing crashes but also for improving mobility through TTS and reduced TTV.
Resumo:
Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.
Resumo:
One of the main challenges of slow speed machinery condition monitoring is that the energy generated from an incipient defect is too weak to be detected by traditional vibration measurements due to its low impact energy. Acoustic emission (AE) measurement is an alternative for this as it has the ability to detect crack initiations or rubbing between moving surfaces. However, AE measurement requires high sampling frequency and consequently huge amount of data are obtained to be processed. It also requires expensive hardware to capture those data, storage and involves signal processing techniques to retrieve valuable information on the state of the machine. AE signal has been utilised for early detection of defects in bearings and gears. This paper presents an online condition monitoring (CM) system for slow speed machinery, which attempts to overcome those challenges. The system incorporates relevant signal processing techniques for slow speed CM which include noise removal techniques to enhance the signal-to-noise and peak-holding down sampling to reduce the burden of massive data handling. The analysis software works under Labview environment, which enables online remote control of data acquisition, real-time analysis, offline analysis and diagnostic trending. The system has been fully implemented on a site machine and contributing significantly to improve the maintenance efficiency and provide a safer and reliable operation.
Resumo:
Automobiles have deeply impacted the way in which we travel but they have also contributed to many deaths and injury due to crashes. A number of reasons for these crashes have been pointed out by researchers. Inexperience has been identified as a contributing factor to road crashes. Driver’s driving abilities also play a vital role in judging the road environment and reacting in-time to avoid any possible collision. Therefore driver’s perceptual and motor skills remain the key factors impacting on road safety. Our failure to understand what is really important for learners, in terms of competent driving, is one of the many challenges for building better training programs. Driver training is one of the interventions aimed at decreasing the number of crashes that involve young drivers. Currently, there is a need to develop comprehensive driver evaluation system that benefits from the advances in Driver Assistance Systems. A multidisciplinary approach is necessary to explain how driving abilities evolves with on-road driving experience. To our knowledge, driver assistance systems have never been comprehensively used in a driver training context to assess the safety aspect of driving. The aim and novelty of this thesis is to develop and evaluate an Intelligent Driver Training System (IDTS) as an automated assessment tool that will help drivers and their trainers to comprehensively view complex driving manoeuvres and potentially provide effective feedback by post processing the data recorded during driving. This system is designed to help driver trainers to accurately evaluate driver performance and has the potential to provide valuable feedback to the drivers. Since driving is dependent on fuzzy inputs from the driver (i.e. approximate distance calculation from the other vehicles, approximate assumption of the other vehicle speed), it is necessary that the evaluation system is based on criteria and rules that handles uncertain and fuzzy characteristics of the driving tasks. Therefore, the proposed IDTS utilizes fuzzy set theory for the assessment of driver performance. The proposed research program focuses on integrating the multi-sensory information acquired from the vehicle, driver and environment to assess driving competencies. After information acquisition, the current research focuses on automated segmentation of the selected manoeuvres from the driving scenario. This leads to the creation of a model that determines a “competency” criterion through the driving performance protocol used by driver trainers (i.e. expert knowledge) to assess drivers. This is achieved by comprehensively evaluating and assessing the data stream acquired from multiple in-vehicle sensors using fuzzy rules and classifying the driving manoeuvres (i.e. overtake, lane change, T-crossing and turn) between low and high competency. The fuzzy rules use parameters such as following distance, gaze depth and scan area, distance with respect to lanes and excessive acceleration or braking during the manoeuvres to assess competency. These rules that identify driving competency were initially designed with the help of expert’s knowledge (i.e. driver trainers). In-order to fine tune these rules and the parameters that define these rules, a driving experiment was conducted to identify the empirical differences between novice and experienced drivers. The results from the driving experiment indicated that significant differences existed between novice and experienced driver, in terms of their gaze pattern and duration, speed, stop time at the T-crossing, lane keeping and the time spent in lanes while performing the selected manoeuvres. These differences were used to refine the fuzzy membership functions and rules that govern the assessments of the driving tasks. Next, this research focused on providing an integrated visual assessment interface to both driver trainers and their trainees. By providing a rich set of interactive graphical interfaces, displaying information about the driving tasks, Intelligent Driver Training System (IDTS) visualisation module has the potential to give empirical feedback to its users. Lastly, the validation of the IDTS system’s assessment was conducted by comparing IDTS objective assessments, for the driving experiment, with the subjective assessments of the driver trainers for particular manoeuvres. Results show that not only IDTS was able to match the subjective assessments made by driver trainers during the driving experiment but also identified some additional driving manoeuvres performed in low competency that were not identified by the driver trainers due to increased mental workload of trainers when assessing multiple variables that constitute driving. The validation of IDTS emphasized the need for an automated assessment tool that can segment the manoeuvres from the driving scenario, further investigate the variables within that manoeuvre to determine the manoeuvre’s competency and provide integrated visualisation regarding the manoeuvre to its users (i.e. trainers and trainees). Through analysis and validation it was shown that IDTS is a useful assistance tool for driver trainers to empirically assess and potentially provide feedback regarding the manoeuvres undertaken by the drivers.
Resumo:
This paper proposes a semi-supervised intelligent visual surveillance system to exploit the information from multi-camera networks for the monitoring of people and vehicles. Modules are proposed to perform critical surveillance tasks including: the management and calibration of cameras within a multi-camera network; tracking of objects across multiple views; recognition of people utilising biometrics and in particular soft-biometrics; the monitoring of crowds; and activity recognition. Recent advances in these computer vision modules and capability gaps in surveillance technology are also highlighted.
Resumo:
Technology-mediated collaboration process has been extensively studied for over a decade. Most applications with collaboration concepts reported in the literature focus on enhancing efficiency and effectiveness of the decision-making processes in objective and well-structured workflows. However, relatively few previous studies have investigated the applications of collaboration schemes to problems with subjective and unstructured nature. In this paper, we explore a new intelligent collaboration scheme for fashion design which, by nature, relies heavily on human judgment and creativity. Techniques such as multicriteria decision making, fuzzy logic, and artificial neural network (ANN) models are employed. Industrial data sets are used for the analysis. Our experimental results suggest that the proposed scheme exhibits significant improvement over the traditional method in terms of the time–cost effectiveness, and a company interview with design professionals has confirmed its effectiveness and significance.
Resumo:
Linking real-time schedulability directly to the Quality of Control (QoC), the ultimate goal of a control system, a hierarchical feedback QoC management framework with the Fixed Priority (FP) and the Earliest-Deadline-First (EDF) policies as plug-ins is proposed in this paper for real-time control systems with multiple control tasks. It uses a task decomposition model for continuous QoC evaluation even in overload conditions, and then employs heuristic rules to adjust the period of each of the control tasks for QoC improvement. If the total requested workload exceeds the desired value, global adaptation of control periods is triggered for workload maintenance. A sufficient stability condition is derived for a class of control systems with delay and period switching of the heuristic rules. Examples are given to demonstrate the proposed approach.
Resumo:
This pre-production script for a non-verbal, multimedia performance is the outcome of three rounds of creative development (2009-10) focussed on adapting a children's picture book for the stage. Protoype versions of this script were realised at work-in progress performances at the Queensland Performing Arts Complex in January 2009, and the Woodward Theatre in July 2009. Supported by the Australia Council, Arts Queensland, Windmill Theatre (SA) and QUT
Resumo:
We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.
Resumo:
Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area highspeed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring’s regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion,this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.