157 resultados para implicit dynamic analysis
Resumo:
The aim of this paper is examine how firms renew their organisational capabilities based on micro organisational processes. Organisational capability development literature points to firms’ failure in capability renewal process. To overcome this inefficiency, it is proposed to integrate dynamic capability and ambidexterity perspectives by studying knowledge integration within product innovation. In this relation, applying micro perspective in studying technology diffusion within Iranian Auto industry revealed micro co-evolutionary relationships between knowledge integration within product innovation and capability development. Furthermore, based on near decomposability principals, the analysis suggested relationships among modularity of product architecture, modularity of organisational modularity and modularity of industry architecture in downstream and upstream value chain. Based on these micro-macro co evolutionary effects, capability development process underlying successful corporate entrepreneurship may be verified.
Resumo:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
Resumo:
Online dating websites enable a specific form of social networking and their efficiency can be increased by supporting proactive recommendations based on participants' preferences with the use of data mining. This research develops two-way recommendation methods for people-to-people recommendation for large online social networks such as online dating networks. This research discovers the characteristics of the online dating networks and utilises these characteristics in developing efficient people-to-people recommendation methods. Methods developed support improved recommendation accuracy, can handle data sparsity that often comes with large data sets and are scalable for handling online networks with a large number of users.
Resumo:
Spatial organisation of proteins according to their function plays an important role in the specificity of their molecular interactions. Emerging proteomics methods seek to assign proteins to sub-cellular locations by partial separation of organelles and computational analysis of protein abundance distributions among partially separated fractions. Such methods permit simultaneous analysis of unpurified organelles and promise proteome-wide localisation in scenarios wherein perturbation may prompt dynamic re-distribution. Resolving organelles that display similar behavior during a protocol designed to provide partial enrichment represents a possible shortcoming. We employ the Localisation of Organelle Proteins by Isotope Tagging (LOPIT) organelle proteomics platform to demonstrate that combining information from distinct separations of the same material can improve organelle resolution and assignment of proteins to sub-cellular locations. Two previously published experiments, whose distinct gradients are alone unable to fully resolve six known protein-organelle groupings, are subjected to a rigorous analysis to assess protein-organelle association via a contemporary pattern recognition algorithm. Upon straightforward combination of single-gradient data, we observe significant improvement in protein-organelle association via both a non-linear support vector machine algorithm and partial least-squares discriminant analysis. The outcome yields suggestions for further improvements to present organelle proteomics platforms, and a robust analytical methodology via which to associate proteins with sub-cellular organelles.
Resumo:
This paper merges the analysis of a case history and the simplified theoretical model related to a rather singular phenomenon that may happen in rotating machinery. Starting from the first, a small industrial steam turbine experienced a very strange behavior during megawatt load. When the unit was approaching the maximum allowed power, the temperature of the babbitt metal of the pads of the thrust bearing showed constant increase with an unrecoverable drift. Bearing inspection showed that pad trailing edge had the typical aspect of electrical pitting. This kind of damage was not reparable and bearing pads had to replaced. This problem occurred several times in sequence and was solved only by adding further ground brushes to the shaft-line. Failure analysis indicated electrodischarge machining as the root fault. A specific model, able to take into consideration the effect of electrical pitting and loading capacity decreasing as a consequence of the damage of the babbitt metal, is proposed in the paper and shows that the phenomenon causes the irretrievable failure of the thrust bearing.
Resumo:
The Bluetooth technology is being increasingly used, among the Automated Vehicle Identification Systems, to retrieve important information about urban networks. Because the movement of Bluetooth-equipped vehicles can be monitored, throughout the network of Bluetooth sensors, this technology represents an effective means to acquire accurate time dependant Origin Destination information. In order to obtain reliable estimations, however, a number of issues need to be addressed, through data filtering and correction techniques. Some of the main challenges inherent to Bluetooth data are, first, that Bluetooth sensors may fail to detect all of the nearby Bluetooth-enabled vehicles. As a consequence, the exact journey for some vehicles may become a latent pattern that will need to be estimated. Second, sensors that are in close proximity to each other may have overlapping detection areas, thus making the task of retrieving the correct travelled path even more challenging. The aim of this paper is twofold: to give an overview of the issues inherent to the Bluetooth technology, through the analysis of the data available from the Bluetooth sensors in Brisbane; and to propose a method for retrieving the itineraries of the individual Bluetooth vehicles. We argue that estimating these latent itineraries, accurately, is a crucial step toward the retrieval of accurate dynamic Origin Destination Matrices.
Resumo:
Floods are among the most devastating events that affect primarily tropical, archipelagic countries such as the Philippines. With the current predictions of climate change set to include rising sea levels, intensification of typhoon strength and a general increase in the mean annual precipitation throughout the Philippines, it has become paramount to prepare for the future so that the increased risk of floods on the country does not translate into more economic and human loss. Field work and data gathering was done within the framework of an internship at the former German Technical Cooperation (GTZ) in cooperation with the Local Government Unit of Ormoc City, Leyte, The Philippines, in order to develop a dynamic computer based flood model for the basin of the Pagsangaan River. To this end, different geo-spatial analysis tools such as PCRaster and ArcGIS, hydrological analysis packages and basic engineering techniques were assessed and implemented. The aim was to develop a dynamic flood model and use the development process to determine the required data, availability and impact on the results as case study for flood early warning systems in the Philippines. The hope is that such projects can help to reduce flood risk by including the results of worst case scenario analyses and current climate change predictions into city planning for municipal development, monitoring strategies and early warning systems. The project was developed using a 1D-2D coupled model in SOBEK (Deltares Hydrological modelling software package) and was also used as a case study to analyze and understand the influence of different factors such as land use, schematization, time step size and tidal variation on the flood characteristics. Several sources of relevant satellite data were compared, such as Digital Elevation Models (DEMs) from ASTER and SRTM data, as well as satellite rainfall data from the GIOVANNI server (NASA) and field gauge data. Different methods were used in the attempt to partially calibrate and validate the model to finally simulate and study two Climate Change scenarios based on scenario A1B predictions. It was observed that large areas currently considered not prone to floods will become low flood risk (0.1-1 m water depth). Furthermore, larger sections of the floodplains upstream of the Lilo- an’s Bridge will become moderate flood risk areas (1 - 2 m water depth). The flood hazard maps created for the development of the present project will be presented to the LGU and the model will be used to create a larger set of possible flood prone areas related to rainfall intensity by GTZ’s Local Disaster Risk Management Department and to study possible improvements to the current early warning system and monitoring of the basin section belonging to Ormoc City; recommendations about further enhancement of the geo-hydro-meteorological data to improve the model’s accuracy mainly on areas of interest will also be presented at the LGU.
Resumo:
The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system. It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned. This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects. The concepts of different types of wind turbine generators (WTGs) and the principles of the grid-connected structures of wind power generation systems are first briefly introduced. Then, the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified. Finally, the control strategies on WTGs to enhance power system damping characteristics are presented.
Resumo:
An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.
Resumo:
This work considers the problem of building high-fidelity 3D representations of the environment from sensor data acquired by mobile robots. Multi-sensor data fusion allows for more complete and accurate representations, and for more reliable perception, especially when different sensing modalities are used. In this paper, we propose a thorough experimental analysis of the performance of 3D surface reconstruction from laser and mm-wave radar data using Gaussian Process Implicit Surfaces (GPIS), in a realistic field robotics scenario. We first analyse the performance of GPIS using raw laser data alone and raw radar data alone, respectively, with different choices of covariance matrices and different resolutions of the input data. We then evaluate and compare the performance of two different GPIS fusion approaches. The first, state-of-the-art approach directly fuses raw data from laser and radar. The alternative approach proposed in this paper first computes an initial estimate of the surface from each single source of data, and then fuses these two estimates. We show that this method outperforms the state of the art, especially in situations where the sensors react differently to the targets they perceive.
Resumo:
The objective of this paper is to explore the relationship between dynamic capabilities and different types of online innovations. Building on qualitative data from the publishing industry, our analysis revealed that companies that had relatively strong dynamic capabilities in all three areas (sensing, seizing and reconfiguration) seem to produce innovations that combine their existing capabilities on either the market or the technology dimension with new capabilities on the other dimension thus resulting in niche creation and revolutionary type innovations. Correspondingly, companies with a weaker or more one-sided set of dynamic capabilities seem to produce more radical innovations requiring both new market and technological capabilities. The study therefore provides an empirical contribution to the emerging work on dynamic capabilities through its in-depth investigation of the capabilities of the four case firms, and by mapping the patterns between the firm's portfolio of dynamic capabilities and innovation outcomes.
Resumo:
This paper uses innovative content analysis techniques to map how the death of Oscar Pistorius' girlfriend, Reeva Steenkamp, was framed on Twitter conversations. Around 1.5 million posts from a two-week timeframe are analyzed with a combination of syntactic and semantic methods. This analysis is grounded in the frame analysis perspective and is different than sentiment analysis. Instead of looking for explicit evaluations, such as “he is guilty” or “he is innocent”, we showcase through the results how opinions can be identified by complex articulations of more implicit symbolic devices such as examples and metaphors repeatedly mentioned. Different frames are adopted by users as more information about the case is revealed: from a more episodic one, highly used in the very beginning, to more systemic approaches, highlighting the association of the event with urban violence, gun control issues, and violence against women. A detailed timeline of the discussions is provided.
Resumo:
This paper presents the response of pile foundations to ground shocks induced by surface explosion using fully coupled and non-linear dynamic computer simulation techniques together with different material models for the explosive, air, soil and pile. It uses the Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations. Blast wave propagation in soil, horizontal pile deformation and pile damage are presented to facilitate failure evaluation of piles. Effects of end restraint of pile head and the number and spacing of piles within a group on their blast response and potential failure are investigated. The techniques developed and applied in this paper and its findings provide valuable information on the blast response and failure evaluation of piles and will provide guidance in their future analysis and design.
Resumo:
Many model-based investigation techniques, such as sensitivity analysis, optimization, and statistical inference, require a large number of model evaluations to be performed at different input and/or parameter values. This limits the application of these techniques to models that can be implemented in computationally efficient computer codes. Emulators, by providing efficient interpolation between outputs of deterministic simulation models, can considerably extend the field of applicability of such computationally demanding techniques. So far, the dominant techniques for developing emulators have been priors in the form of Gaussian stochastic processes (GASP) that were conditioned with a design data set of inputs and corresponding model outputs. In the context of dynamic models, this approach has two essential disadvantages: (i) these emulators do not consider our knowledge of the structure of the model, and (ii) they run into numerical difficulties if there are a large number of closely spaced input points as is often the case in the time dimension of dynamic models. To address both of these problems, a new concept of developing emulators for dynamic models is proposed. This concept is based on a prior that combines a simplified linear state space model of the temporal evolution of the dynamic model with Gaussian stochastic processes for the innovation terms as functions of model parameters and/or inputs. These innovation terms are intended to correct the error of the linear model at each output step. Conditioning this prior to the design data set is done by Kalman smoothing. This leads to an efficient emulator that, due to the consideration of our knowledge about dominant mechanisms built into the simulation model, can be expected to outperform purely statistical emulators at least in cases in which the design data set is small. The feasibility and potential difficulties of the proposed approach are demonstrated by the application to a simple hydrological model.
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.