185 resultados para heritage buildings
Resumo:
This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.
Resumo:
Since the first oil crisis in 1974, economic reasons placed energy saving among the top priorities in most industrialised countries. In the decades that followed, another, equally strong driver for energy saving emerged: climate change caused by anthropogenic emissions, a large fraction of which result from energy generation. Intrinsically linked to energy consumption and its related emissions is another problem: indoor air quality. City dwellers in industrialised nations spend over 90% of their time indoors and exposure to indoor pollutants contributes to ~2.6% of global burden of disease and nearly 2 million premature deaths per year1. Changing climate conditions, together with human expectations of comfortable thermal conditions, elevates building energy requirements for heating, cooling, lighting and the use of other electrical equipment. We believe that these changes elicit a need to understand the nexus between energy consumption and its consequent impact on indoor air quality in urban buildings. In our opinion the key questions are how energy consumption is distributed between different building services, and how the resulting pollution affects indoor air quality. The energy-pollution nexus has clearly been identified in qualitative terms; however the quantification of such a nexus to derive emissions or concentrations per unit energy consumption is still weak, inconclusive and requires forward thinking. Of course, various aspects of energy consumption and indoor air quality have been studied in detail separately, but in-depth, integrated studies of the energy-pollution nexus are hard to come by. We argue that such studies could be instrumental in providing sustainable solutions to maintain the trade-off between the energy efficiency of buildings and acceptable levels of air pollution for healthy living.
Resumo:
Climate change is expected to increase earth’s temperatures and consequently result in more frequent extreme weather events such as cyclones, storms, droughts and floods and rising global sea levels. This phenomenon will affect all assets. This paper discusses the impact of climate change and its consequences on public buildings. Public building management encompasses the building life cycle from planning, procurement, operation, repair and maintenance and building disposal. This paper recommends climate change adaptation strategies to be integrated into public building management. The roles and responsibilities of asset managers and users are discussed within the framework of planning and implementation of public building management and the integration of climate change adaptation strategies. A key point is that climate change can induce premature obsolescence of public buildings and services, which will increase the maintenance and refurbishment costs. This in turn will affect the life cycle cost of the building. Furthermore, a business continuity plan is essential for public building management in the context of disasters. The paper also highlights the significant role that the occupants of public buildings can play in the development and implementation of climate change adaptation strategies.
Resumo:
Flood flows in inundated urban environment constitute a natural hazard. During the 12- 13 January 2011 flood of the Brisbane River, detailed water elevation, velocity and suspended sediment data were recorded in an inundated street at the peak of the flood. The field observations highlighted a number of unusual flow interactions with the urban surroundings. These included some slow fluctuations in water elevations and velocity with distinctive periods between 50 and 100 s caused by some local topographic effect (choking), superposed with some fast turbulent fluctuations. The suspended sediment data highlighted some significant suspended sediment loads in the inundated zone.
Resumo:
In recent times, fire has become a major disaster in buildings due to the increase in fire loads, as a result of modern furniture and light weight construction. This has caused problems for safe evacuation and rescue activities, and in some instances lead to the collapse of buildings (Lewis, 2008 and Nyman, 2002). Recent research has shown that the actual fire resistance of building elements exposed to building fires can be less than their specified fire resistance rating (Lennon and Moore, 2003, Jones, 2002, Nyman, 2002 and Abecassis-Empis et al. 2008). Conventionally the fire rating of building elements is determined using fire tests based on the standard fire time-temperature curve given in ISO 834. This ISO 834 curve was developed in the early 1900s, where wood was the basic fuel source. In reality, modern buildings make use of thermoplastic materials, synthetic foams and fabrics. These materials are high in calorific values and increase both the speed of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Hence it suggests the need to use realistic fire time-temperature curves in tests. Real building fire temperature profiles depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials. Fuel load is selected based on a review and suitable realistic fire time-temperature curves were developed. Fire tests were then performed for plasterboard lined light gauge steel framed walls for the developed realistic fire curves. This paper presents the details of the development of suitable realistic building fire curves, and the fire tests using them. It describes the fire performance of tested walls in comparison to the standard fire tests and highlights the differences between them. This research has shown the need to use realistic fire exposures in assessing the fire resistance rating of building elements.
Resumo:
Tanzania has a rich and diverse cultural history based on community cultural life. However, at present, young people have limited opportunity to exploit this richness of creative expressions and engage in creative jobs as their future career. Hence, the significant challenge remains: how to integrate Intangible cultural heritage elements and learning strategy as a means of promoting creative jobs for youth. This paper presents a case study on 'Strategies for youth employment in Tanzania: A creative industries approach'. The case study employed mixed methods incorporating questionnaires, interviews and focus groups and was held in Dar-Es-Salaam, Mwanza, Dodoma, Lindi and Morogoro from July to October, 2012. This paper discusses some of the issues and argues that there is no virtual utilization of the intangible cultural heritage knowledge and skills in 'putting education to work' (UNESCO, 2012) for the better prospects of youth. Although the discussion is specific to Tanzania, the case may also apply to other developing countries.
Resumo:
Policy makers increasingly recognise that an educated workforce with a high proportion of Science, Technology, Engineering and Mathematics (STEM) graduates is a pre-requisite to a knowledge-based, innovative economy. Over the past ten years, the proportion of first university degrees awarded in Australia in STEM fields is below the global average and continues to decrease from 22.2% in 2002 to 18.8% in 2010 [1]. These trends are mirrored by declines between 20% and 30% in the proportions of high school students enrolled in science or maths. These trends are not unique to Australia but their impact is of concern throughout the policy-making community. To redress these demographic trends, QUT embarked upon a long-term investment strategy to integrate education and research into the physical and virtual infrastructure of the campus, recognising that expectations of students change as rapidly as technology and learning practices change. To implement this strategy, physical infrastructure refurbishment/re-building is accompanied by upgraded technologies not only for learning but also for research. QUT’s vision for its city-based campuses is to create vibrant and attractive places to learn and research and to link strongly to the wider surrounding community. Over a five year period, physical infrastructure at the Gardens Point campus was substantially reconfigured in two key stages: (a) a >$50m refurbishment of heritage-listed buildings to encompass public, retail and social spaces, learning and teaching “test beds” and research laboratories and (b) destruction of five buildings to be replaced by a $230m, >40,000m2 Science and Engineering Centre designed to accommodate retail, recreation, services, education and research in an integrated, coordinated precinct. This landmark project is characterised by (i) self-evident, collaborative spaces for learning, research and social engagement, (ii) sustainable building practices and sustainable ongoing operation and; (iii) dynamic and mobile re-configuration of spaces or staffing to meet demand. Innovative spaces allow for transformative, cohort-driven learning and the collaborative use of space to prosecute joint class projects. Research laboratories are aggregated, centralised and “on display” to the public, students and staff. A major visualisation space – the largest multi-touch, multi-user facility constructed to date – is a centrepiece feature that focuses on demonstrating scientific and engineering principles or science oriented scenes at large scale (e.g. the Great Barrier Reef). Content on this visualisation facility is integrated with the regional school curricula and supports an in-house schools program for student and teacher engagement. Researchers are accommodated in a combined open-plan and office floor-space (80% open plan) to encourage interdisciplinary engagement and cross-fertilisation of skills, ideas and projects. This combination of spaces re-invigorates the on-campus experience, extends educational engagement across all ages and rapidly enhances research collaboration.
Resumo:
Executive Summary This report is the first in-depth exploration of identity and popular culture among Middle Eastern and Asian youth. It documents preliminary research findings on the contribution of Middle Eastern and Asian youth to Sydney’s cultural life and migration heritage. While young people from these communities, the largest migrant communities in NSW, are often negatively portrayed, this research has focused on their social practices of cultural invention, opening up new and creative means of mobilising cultural difference. These young people’s cultural negotiations between migrant family background and the wider society require real engagement with difference and provide rich resources for invigorating the multicultural fabric of the nation. Their repertoire of cultural skills and their involvement in different cultural worlds are often viewed as evidence of not ‘belonging’ to the mainstream or dominant culture. However, the results of our research reveal that the ‘in-betweenness’ of these young people often enables them to move easily between different social and cultural groupings, embracing cultural diversity as inherent and integral to their everyday experience, that is, ‘normal’ to urban life. In this report, we document the changing nature of friendship networks and family relations, the particular meanings and uses of different languages and expressions, and the patterns of consumption of Middle Eastern and Asian youth. In these everyday activities these young people contribute to a changing migration heritage and are redefining what it means to be Australian.
Resumo:
The ethnic identity and commitment of Heritage Language Learners play salient roles in Heritage Language learning process. The mutually constitutive effect amongst Heritage Language Learner's ethnic identity, commitment, and Heritage Language proficiency has been well documented in social psychological and poststructuralist literatures. Both social psychological and poststructural schools offer meaningful insights into particular contexts but receive critiques from other contexts. In addition, the two schools largely oppose each other. This study uses Bourdieu's sociological triad of habitus, capital, and field to reconcile the two schools through the examination of Chinese Heritage Language Learners in Australia, an idiosyncratic social, cultural, and historical context for these learners. Specifically, this study investigates how young Chinese Australian adults (18-35 in age) negotiate their 'Chineseness' and capitalise on resources through Chinese Heritage Language learning in the lived world. The study adopts an explanatory mixed methods design to combine the quantitative approach with the qualitative approach. The initial quantitative phase addresses the first research question: Is Chinese Heritage Language proficiency of young Chinese Australian adults influenced by their investment of capital, the strength of their habitus of 'Chineseness', or both? The subsequent qualitative phase addresses the second research question: How do young Chinese Australian adults understand their Chinese Heritage Language learning in relation to (potential) profits produced by this linguistic capital in given fields? The initial quantitative phase applies Structural Equation Modelling to analyse the data from an online survey with 230 respondents. Findings indicate the statistically significant positive contribution made by the habitus of 'Chineseness' and by investment of capital to Chinese Heritage Language proficiency (r = .71 and r = .86 respectively). Subsequent multiple regression analysis demonstrates that 62% of the variance of Chinese Heritage Language proficiency can be accounted for by the joint contribution of 'Chineseness' and 'capital'. The qualitative phase of the study uses multiple interviews with five participants. It reveals that Chinese Heritage Language offers meaningful benefits for participants in the forms of capital production and habitus capture or recapture. Findings from the two phases talk to each other in terms of the inherent entanglement amongst habitus of 'Chineseness', investment of capital, and Chinese Heritage Language proficiency. The study offers important contributions. Theoretically, by virtue of Bourdieu's signature concepts of habitus, capital, and field, the study provides answers to questions that both social psychological and poststructuralist theories have long been struggling to answer. Methodologically, the position of 'pluralism' talks back to Bourdieu's theory and forwards to the mixed methods design. Particularly, the study makes a methodological breakthrough: A set of instruments was developed and validated to quantify Bourdieu's key concepts of capital and habitus within certain social fields. Practically, understanding Chinese Australians' heterogeneity and the potential drivers behind Chinese Heritage Language learning contributes to the growing interest in Chinese Australians' contemporary life experiences and helps to better accommodate linguistically diverse Chinese Heritage Language Learners in Chinese language courses. In addition, this study is very timely. It resonates with the recently released Australia in the Asian Century White Paper: Chinese Australians, with sound knowledge of Chinese culture and language obtained through negotiating their 'Chineseness' and capitalising on diverse resources for learning, will help to serve Australia's economic, social, and political needs in unique ways.
Resumo:
This research investigated airborne particle characteristics and their dynamics inside and around the envelope of mechanically ventilated office buildings, together with building thermal conditions and energy consumption. Based on these, a comprehensive model was developed to facilitate the optimisation of building heating, ventilation and air conditioning systems, in order to protect the health of their occupants and minimise the energy requirements of these buildings.
Resumo:
High-wind events such as storms and hurricanes cause severe damage to low-rise building (housing, schools, and industrial, commercial, and farm buildings). Roof claddings often suffer the worst, which then leads to accelerated damage to the whole building. Australia leads the way in solving this international problem through extensive research and development work, and has adequate documents in place. This paper first illustrates briefly the nature of high-wind events and then the commonly observed damage to buildings. Australian research work and design practice are then described, based on which suitable design recommendations for wind-resistant buildings are presented.
Resumo:
The realistic strength and deflection behavior of industrial and commercial steel portal frame buildings are understood only if the effects of rigidity of end frames and profiled steel claddings are included. The conventional designs ignore these effects and are very much based on idealized two-dimensional (2D) frame behavior. Full-scale tests of a 1212 m steel portal frame building under a range of design load cases indicated that the observed deflections and bending moments in the portal frame were considerably different from those obtained from a 2D analysis of frames ignoring these effects. Three-dimensional (3D) analyses of the same building, including the effects of end frames and cladding, were carried out, and the results agreed well with full-scale test results. Results clearly indicated the need for such an analysis and for testing to study the true behavior of steel portal frame buildings. It is expected that such a 3D analysis will lead to lighter steel frames as the maximum moments and deflections are reduced.