205 resultados para feature representation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal-infrared images have superior statistical properties compared with visible-spectrum images in many low-light or no-light scenarios. However, a detailed understanding of feature detector performance in the thermal modality lags behind that of the visible modality. To address this, the first comprehensive study on feature detector performance on thermal-infrared images is conducted. A dataset is presented which explores a total of ten different environments with a range of statistical properties. An investigation is conducted into the effects of several digital and physical image transformations on detector repeatability in these environments. The effect of non-uniformity noise, unique to the thermal modality, is analyzed. The accumulation of sensor non-uniformities beyond the minimum possible level was found to have only a small negative effect. A limiting of feature counts was found to improve the repeatability performance of several detectors. Most other image transformations had predictable effects on feature stability. The best-performing detector varied considerably depending on the nature of the scene and the test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex networks have been studied extensively due to their relevance to many real-world systems such as the world-wide web, the internet, biological and social systems. During the past two decades, studies of such networks in different fields have produced many significant results concerning their structures, topological properties, and dynamics. Three well-known properties of complex networks are scale-free degree distribution, small-world effect and self-similarity. The search for additional meaningful properties and the relationships among these properties is an active area of current research. This thesis investigates a newer aspect of complex networks, namely their multifractality, which is an extension of the concept of selfsimilarity. The first part of the thesis aims to confirm that the study of properties of complex networks can be expanded to a wider field including more complex weighted networks. Those real networks that have been shown to possess the self-similarity property in the existing literature are all unweighted networks. We use the proteinprotein interaction (PPI) networks as a key example to show that their weighted networks inherit the self-similarity from the original unweighted networks. Firstly, we confirm that the random sequential box-covering algorithm is an effective tool to compute the fractal dimension of complex networks. This is demonstrated on the Homo sapiens and E. coli PPI networks as well as their skeletons. Our results verify that the fractal dimension of the skeleton is smaller than that of the original network due to the shortest distance between nodes is larger in the skeleton, hence for a fixed box-size more boxes will be needed to cover the skeleton. Then we adopt the iterative scoring method to generate weighted PPI networks of five species, namely Homo sapiens, E. coli, yeast, C. elegans and Arabidopsis Thaliana. By using the random sequential box-covering algorithm, we calculate the fractal dimensions for both the original unweighted PPI networks and the generated weighted networks. The results show that self-similarity is still present in generated weighted PPI networks. This implication will be useful for our treatment of the networks in the third part of the thesis. The second part of the thesis aims to explore the multifractal behavior of different complex networks. Fractals such as the Cantor set, the Koch curve and the Sierspinski gasket are homogeneous since these fractals consist of a geometrical figure which repeats on an ever-reduced scale. Fractal analysis is a useful method for their study. However, real-world fractals are not homogeneous; there is rarely an identical motif repeated on all scales. Their singularity may vary on different subsets; implying that these objects are multifractal. Multifractal analysis is a useful way to systematically characterize the spatial heterogeneity of both theoretical and experimental fractal patterns. However, the tools for multifractal analysis of objects in Euclidean space are not suitable for complex networks. In this thesis, we propose a new box covering algorithm for multifractal analysis of complex networks. This algorithm is demonstrated in the computation of the generalized fractal dimensions of some theoretical networks, namely scale-free networks, small-world networks, random networks, and a kind of real networks, namely PPI networks of different species. Our main finding is the existence of multifractality in scale-free networks and PPI networks, while the multifractal behaviour is not confirmed for small-world networks and random networks. As another application, we generate gene interactions networks for patients and healthy people using the correlation coefficients between microarrays of different genes. Our results confirm the existence of multifractality in gene interactions networks. This multifractal analysis then provides a potentially useful tool for gene clustering and identification. The third part of the thesis aims to investigate the topological properties of networks constructed from time series. Characterizing complicated dynamics from time series is a fundamental problem of continuing interest in a wide variety of fields. Recent works indicate that complex network theory can be a powerful tool to analyse time series. Many existing methods for transforming time series into complex networks share a common feature: they define the connectivity of a complex network by the mutual proximity of different parts (e.g., individual states, state vectors, or cycles) of a single trajectory. In this thesis, we propose a new method to construct networks of time series: we define nodes by vectors of a certain length in the time series, and weight of edges between any two nodes by the Euclidean distance between the corresponding two vectors. We apply this method to build networks for fractional Brownian motions, whose long-range dependence is characterised by their Hurst exponent. We verify the validity of this method by showing that time series with stronger correlation, hence larger Hurst exponent, tend to have smaller fractal dimension, hence smoother sample paths. We then construct networks via the technique of horizontal visibility graph (HVG), which has been widely used recently. We confirm a known linear relationship between the Hurst exponent of fractional Brownian motion and the fractal dimension of the corresponding HVG network. In the first application, we apply our newly developed box-covering algorithm to calculate the generalized fractal dimensions of the HVG networks of fractional Brownian motions as well as those for binomial cascades and five bacterial genomes. The results confirm the monoscaling of fractional Brownian motion and the multifractality of the rest. As an additional application, we discuss the resilience of networks constructed from time series via two different approaches: visibility graph and horizontal visibility graph. Our finding is that the degree distribution of VG networks of fractional Brownian motions is scale-free (i.e., having a power law) meaning that one needs to destroy a large percentage of nodes before the network collapses into isolated parts; while for HVG networks of fractional Brownian motions, the degree distribution has exponential tails, implying that HVG networks would not survive the same kind of attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term- based ones in describing user preferences, but many experiments do not support this hypothesis. This research presents a promising method, Relevance Feature Discovery (RFD), for solving this challenging issue. It discovers both positive and negative patterns in text documents as high-level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the high-level features. The thesis also introduces an adaptive model (called ARFD) to enhance the exibility of using RFD in adaptive environment. ARFD automatically updates the system's knowledge based on a sliding window over new incoming feedback documents. It can efficiently decide which incoming documents can bring in new knowledge into the system. Substantial experiments using the proposed models on Reuters Corpus Volume 1 and TREC topics show that the proposed models significantly outperform both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and other pattern-based methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is an exploration of representation, authorship and creative collaboration in disability comedy, the centre piece of which is a feature-length film starring, co-created and co-written by three intellectually-disabled people. The film, entitled Down Under Mystery Tour, aims to entertain, and be accessible to, a mainstream audience, one that would not normally care about disability or listen to disabled voices. In the past, the failure of these voices to reach audiences has been blamed on poor training, marginal timeslots and indifferent audiences. But this project seeks an alternative approach, building collaboration between disabled and non-disabled people to express voice, conceive, construct and produce a filmed narrative, and engage willing audiences who want to listen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low resolution of images has been one of the major limitations in recognising humans from a distance using their biometric traits, such as face and iris. Superresolution has been employed to improve the resolution and the recognition performance simultaneously, however the majority of techniques employed operate in the pixel domain, such that the biometric feature vectors are extracted from a super-resolved input image. Feature-domain superresolution has been proposed for face and iris, and is shown to further improve recognition performance by capitalising on direct super-resolving the features which are used for recognition. However, current feature-domain superresolution approaches are limited to simple linear features such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which are not the most discriminant features for biometrics. Gabor-based features have been shown to be one of the most discriminant features for biometrics including face and iris. This paper proposes a framework to conduct super-resolution in the non-linear Gabor feature domain to further improve the recognition performance of biometric systems. Experiments have confirmed the validity of the proposed approach, demonstrating superior performance to existing linear approaches for both face and iris biometrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article provides a tutorial introduction to visual servo control of robotic manipulators. Since the topic spans many disciplines our goal is limited to providing a basic conceptual framework. We begin by reviewing the prerequisite topics from robotics and computer vision, including a brief review of coordinate transformations, velocity representation, and a description of the geometric aspects of the image formation process. We then present a taxonomy of visual servo control systems. The two major classes of systems, position-based and image-based systems, are then discussed in detail. Since any visual servo system must be capable of tracking image features in a sequence of images, we also include an overview of feature-based and correlation-based methods for tracking. We conclude the tutorial with a number of observations on the current directions of the research field of visual servo control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated feature extraction and correspondence determination is an extremely important problem in the face recognition community as it often forms the foundation of the normalisation and database construction phases of many recognition and verification systems. This paper presents a completely automatic feature extraction system based upon a modified volume descriptor. These features form a stable descriptor for faces and are utilised in a reversible jump Markov chain Monte Carlo correspondence algorithm to automatically determine correspondences which exist between faces. The developed system is invariant to changes in pose and occlusion and results indicate that it is also robust to minor face deformations which may be present with variations in expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common software analysis tools available for measuring fluorescence images are for two-dimensional (2D) data that rely on manual settings for inclusion and exclusion of data points, and computer-aided pattern recognition to support the interpretation and findings of the analysis. It has become increasingly important to be able to measure fluorescence images constructed from three-dimensional (3D) datasets in order to be able to capture the complexity of cellular dynamics and understand the basis of cellular plasticity within biological systems. Sophisticated microscopy instruments have permitted the visualization of 3D fluorescence images through the acquisition of multispectral fluorescence images and powerful analytical software that reconstructs the images from confocal stacks that then provide a 3D representation of the collected 2D images. Advanced design-based stereology methods have progressed from the approximation and assumptions of the original model-based stereology(1) even in complex tissue sections(2). Despite these scientific advances in microscopy, a need remains for an automated analytic method that fully exploits the intrinsic 3D data to allow for the analysis and quantification of the complex changes in cell morphology, protein localization and receptor trafficking. Current techniques available to quantify fluorescence images include Meta-Morph (Molecular Devices, Sunnyvale, CA) and Image J (NIH) which provide manual analysis. Imaris (Andor Technology, Belfast, Northern Ireland) software provides the feature MeasurementPro, which allows the manual creation of measurement points that can be placed in a volume image or drawn on a series of 2D slices to create a 3D object. This method is useful for single-click point measurements to measure a line distance between two objects or to create a polygon that encloses a region of interest, but it is difficult to apply to complex cellular network structures. Filament Tracer (Andor) allows automatic detection of the 3D neuronal filament-like however, this module has been developed to measure defined structures such as neurons, which are comprised of dendrites, axons and spines (tree-like structure). This module has been ingeniously utilized to make morphological measurements to non-neuronal cells(3), however, the output data provide information of an extended cellular network by using a software that depends on a defined cell shape rather than being an amorphous-shaped cellular model. To overcome the issue of analyzing amorphous-shaped cells and making the software more suitable to a biological application, Imaris developed Imaris Cell. This was a scientific project with the Eidgenössische Technische Hochschule, which has been developed to calculate the relationship between cells and organelles. While the software enables the detection of biological constraints, by forcing one nucleus per cell and using cell membranes to segment cells, it cannot be utilized to analyze fluorescence data that are not continuous because ideally it builds cell surface without void spaces. To our knowledge, at present no user-modifiable automated approach that provides morphometric information from 3D fluorescence images has been developed that achieves cellular spatial information of an undefined shape (Figure 1). We have developed an analytical platform using the Imaris core software module and Imaris XT interfaced to MATLAB (Mat Works, Inc.). These tools allow the 3D measurement of cells without a pre-defined shape and with inconsistent fluorescence network components. Furthermore, this method will allow researchers who have extended expertise in biological systems, but not familiarity to computer applications, to perform quantification of morphological changes in cell dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most current computer systems authorise the user at the start of a session and do not detect whether the current user is still the initial authorised user, a substitute user, or an intruder pretending to be a valid user. Therefore, a system that continuously checks the identity of the user throughout the session is necessary without being intrusive to end-user and/or effectively doing this. Such a system is called a continuous authentication system (CAS). Researchers have applied several approaches for CAS and most of these techniques are based on biometrics. These continuous biometric authentication systems (CBAS) are supplied by user traits and characteristics. One of the main types of biometric is keystroke dynamics which has been widely tried and accepted for providing continuous user authentication. Keystroke dynamics is appealing for many reasons. First, it is less obtrusive, since users will be typing on the computer keyboard anyway. Second, it does not require extra hardware. Finally, keystroke dynamics will be available after the authentication step at the start of the computer session. Currently, there is insufficient research in the CBAS with keystroke dynamics field. To date, most of the existing schemes ignore the continuous authentication scenarios which might affect their practicality in different real world applications. Also, the contemporary CBAS with keystroke dynamics approaches use characters sequences as features that are representative of user typing behavior but their selected features criteria do not guarantee features with strong statistical significance which may cause less accurate statistical user-representation. Furthermore, their selected features do not inherently incorporate user typing behavior. Finally, the existing CBAS that are based on keystroke dynamics are typically dependent on pre-defined user-typing models for continuous authentication. This dependency restricts the systems to authenticate only known users whose typing samples are modelled. This research addresses the previous limitations associated with the existing CBAS schemes by developing a generic model to better identify and understand the characteristics and requirements of each type of CBAS and continuous authentication scenario. Also, the research proposes four statistical-based feature selection techniques that have highest statistical significance and encompasses different user typing behaviors which represent user typing patterns effectively. Finally, the research proposes the user-independent threshold approach that is able to authenticate a user accurately without needing any predefined user typing model a-priori. Also, we enhance the technique to detect the impostor or intruder who may take over during the entire computer session.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a graph-based method to weight medical concepts in documents for the purposes of information retrieval. Medical concepts are extracted from free-text documents using a state-of-the-art technique that maps n-grams to concepts from the SNOMED CT medical ontology. In our graph-based concept representation, concepts are vertices in a graph built from a document, edges represent associations between concepts. This representation naturally captures dependencies between concepts, an important requirement for interpreting medical text, and a feature lacking in bag-of-words representations. We apply existing graph-based term weighting methods to weight medical concepts. Using concepts rather than terms addresses vocabulary mismatch as well as encapsulates terms belonging to a single medical entity into a single concept. In addition, we further extend previous graph-based approaches by injecting domain knowledge that estimates the importance of a concept within the global medical domain. Retrieval experiments on the TREC Medical Records collection show our method outperforms both term and concept baselines. More generally, this work provides a means of integrating background knowledge contained in medical ontologies into data-driven information retrieval approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant gap exists in the Australian research literature on the disproportionate over-representation of minority groups in special education. The aim of this paper is to make a contribution to the research evidence-base by sketching an outline of the issue as it presents in Australia’s largest education system in the state of New South Wales. Findings from this research show that Indigenous students are equally represented in special schools enrolling students with autism, physical, sensory, and intellectual disabilities, but significantly over-represented in special schools enrolling students under the categories of emotional disturbance, behaviour disorder and juvenile detention. Factors that might influence the disproportionate over-representation of Indigenous children and young people are discussed, and based on these observations, some practical implications for policy and practice are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relevance feature and ontology are two core components to learn personalized ontologies for concept-based retrievals. However, how to associate user native information with common knowledge is an urgent issue. This paper proposes a sound solution by matching relevance feature mined from local instances with concepts existing in a global knowledge base. The matched concepts and their relations are used to learn personalized ontologies. The proposed method is evaluated elaborately by comparing it against three benchmark models. The evaluation demonstrates the matching is successful by achieving remarkable improvements in information filtering measurements.