200 resultados para fault


Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed generators (DGs) to a distribution network or a microgrid can create several protection issues. The protection of these networks using protective devices based only on current is a challenging task due to the change in fault current levels and fault current direction. The isolation of a faulted segment from such networks will be difficult if converter interfaced DGs are connected as these DGs limit their output currents during the fault. Furthermore, if DG sources are intermittent, the current sensing protective relays are difficult to set since fault current changes with time depending on the availability of DG sources. The system restoration after a fault occurs is also a challenging protection issue in a converter interfaced DG connected distribution network or a microgrid. Usually, all the DGs will be disconnected immediately after a fault in the network. The safety of personnel and equipment of the distribution network, reclosing with DGs and arc extinction are the major reasons for these DG disconnections. In this thesis, an inverse time admittance (ITA) relay is proposed to protect a distribution network or a microgrid which has several converter interfaced DG connections. The ITA relay is capable of detecting faults and isolating a faulted segment from the network, allowing unfaulted segments to operate either in grid connected or islanded mode operations. The relay does not make the tripping decision based on only the fault current. It also uses the voltage at the relay location. Therefore, the ITA relay can be used effectively in a DG connected network in which fault current level is low or fault current level changes with time. Different case studies are considered to evaluate the performance of the ITA relays in comparison to some of the existing protection schemes. The relay performance is evaluated in different types of distribution networks: radial, the IEEE 34 node test feeder and a mesh network. The results are validated through PSCAD simulations and MATLAB calculations. Several experimental tests are carried out to validate the numerical results in a laboratory test feeder by implementing the ITA relay in LabVIEW. Furthermore, a novel control strategy based on fold back current control is proposed for a converter interfaced DG to overcome the problems associated with the system restoration. The control strategy enables the self extinction of arc if the fault is a temporary arc fault. This also helps in self system restoration if DG capacity is sufficient to supply the load. The coordination with reclosers without disconnecting the DGs from the network is discussed. This results in increased reliability in the network by reduction of customer outages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diesel engine fuel injector faults can lead to reduced power, increased fuel consumption and greater exhaust emission levels and if left unchecked, can eventually lead to premature engine failure. This paper provides an overview of the Diesel, or compression ignition combustion process, and of the two basic fuel injector nozzle designs used in Diesel engines, namely, the pintle-type and hole-type nozzles. Also described are some common faults associated with these two types of fuel injector nozzles and the techniques previously used to experimentally simulate these faults. This paper also presents a recent experimental campaign undertaken using two different diesel engines whereby various fuel injector nozzle faults were induced into the engines. The first series of tests was undertaken using a turbo-charged 5.9 litre; Cummins Diesel engine whist the second series of tests was undertaken using a naturally aspirated 4 cylinder, 2.216 litre, Perkins Diesel engine. Data corresponding to different injector fault conditions was captured using in-cylinder pressure, and acoustic emission transducers along with both crank-angle encoder and top-dead centre reference signals. Using averaged in-cylinder pressure signals, it was possible to qualify the severity of the faults whilst averaged acoustic emission signals were in turn, used as the basis for wavelets decomposition. Initial observations from this signal decomposition are also presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic emission has been found effective in offering earlier fault detection and improving identification capabilities of faults. However, the sensors are inherently uncalibrated. This paper presents a source to sensor paths calibration technique which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time domain, time-frequency domain, and the root mean square (RMS) energy. The results reveal how the RMS energy of a source propagates to the adjacent sensors. The findings lead to allocate the source and estimate its inferences to the adjacent sensor, and finally help to diagnose the small size diesel engines by minimising the crosstalk from multiple cylinders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuing monitoring of diesel engine performance is critical for early detection of fault developments in the engine before they materialize and become a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few non intrusive condition monitoring techniques that can be utilized for such tasks. In this experimental study, IAS analysis was employed to estimate the loading condition of a 4-stroke 4-cylinder diesel engine in a laboratory condition. It was shown that IAS analysis can provide useful information about engine speed variation caused by the changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectrum directly associated with the engine firing frequency (at twice the mean shaft revolution speed) can be utilized to estimate the engine loading condition regardless of whether the engine is operating at normal running conditions or in a simulated faulty injector case. The amplitude of this order component follows a clear exponential curve as the loading condition changes. A mathematical relationship was established for the estimation of the engine power output based on the amplitude of the major order component of the measured IAS spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the 1980s the locus of manufacturing and some services have moved to countries of the Global South. Liberalization of trade and investment has added two billion people to world labour supply and brought workers everywhere into intense competition with each other. Under orthodox neoliberal and neoclassical approaches free trade and open investment should benefit all countries and lead to convergence. However considerable differences in wages and working hours exist between workers of the Global North and those of the Global South. The organising question for the thesis is why workers in different countries but the same industries get different wages. Empirical evidence reviewed in the thesis shows that productivity does not explain these wage differences and that workers in some parts of the South are more productive than workers in the North. Part of the thesis examines the usefulness of explanations drawn from Marxist, institutionalist and global commodity chain approaches. There is a long established argument in Marxist and neo-Marxist writings that differences between North and South result from imperialism and the exercise of power. This is the starting point to review ways of understanding divisions between workers as the outcome of a global class structure. In turn, a fault line is postulated between productive and unproductive labour that largely replicates the division between the Global North and the Global South. Workers and their organizations need shared actions if they are to resist global competition and wage disparities. Solidarity has been the clarion of progressive movements from the Internationals of the early C19th through to the current Global Unions and International Confederation of Trade Unions (ICTU). The thesis examines how nationalism and particular interests have undermined solidarity and reviews the major implications for current efforts to establish and advance a global labour position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A microgrid provides economical and reliable power to customers by integrating distributed resources more effectively. Islanded operation enables a continuous power supply for loads during a major grid disturbance. Reliability of a microgrid can be further increased by forming a mesh configuration. However, the protection of mesh microgrids is a challenging task. In this paper, protection schemes are discussed using current differential protection of a microgrid. The protection challenges associated with bi-directional power flow, meshed configuration, changing fault current level due to intermittent nature of DGs and reduced fault current level in an islanded mode are considered in proposing the protection solutions. Relay setting criterion and current transformer (CT) selection guidelines are also discussed. The results are verified using MATLAB calculations and PSCAD simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Failing injectors are one of the most common faults in diesel engines. The severity of these faults could have serious effects on diesel engine operations such as engine misfire, knocking, insufficient power output or even cause a complete engine breakdown. It is thus essential to prevent such faults from occurring by monitoring the condition of these injectors. In this paper, the authors present the results of an experimental investigation on identifying the signal characteristics of a simulated incipient injector fault in a diesel engine using both in-cylinder pressure and acoustic emission (AE) techniques. A time waveform event driven synchronous averaging technique was used to minimize or eliminate the effect of engine speed variation and amplitude fluctuation. It was found that AE is an effective method to detect the simulated injector fault in both time (crank angle) and frequency (order) domains. It was also shown that the time domain in-cylinder pressure signal is a poor indicator for condition monitoring and diagnosis of the simulated injector fault due to the small effect of the simulated fault on the engine combustion process. Nevertheless, good correlations between the simulated injector fault and the lower order components of the enveloped in-cylinder pressure spectrum were found at various engine loading conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Power system dynamic analysis and security assessment are becoming more significant today due to increases in size and complexity from restructuring, emerging new uncertainties, integration of renewable energy sources, distributed generation, and micro grids. Precise modelling of all contributed elements/devices, understanding interactions in detail, and observing hidden dynamics using existing analysis tools/theorems are difficult, and even impossible. In this chapter, the power system is considered as a continuum and the propagated electomechanical waves initiated by faults and other random events are studied to provide a new scheme for stability investigation of a large dimensional system. For this purpose, the measured electrical indices (such as rotor angle and bus voltage) following a fault in different points among the network are used, and the behaviour of the propagated waves through the lines, nodes, and buses is analyzed. The impact of weak transmission links on a progressive electromechanical wave using energy function concept is addressed. It is also emphasized that determining severity of a disturbance/contingency accurately, without considering the related electromechanical waves, hidden dynamics, and their properties is not secure enough. Considering these phenomena takes heavy and time consuming calculation, which is not suitable for online stability assessment problems. However, using a continuum model for a power system reduces the burden of complex calculations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper draws on a three year Australian Research Council funded project entitled Sexual Harassment in Australia: Context Outcomes and Prevention. The research to date suggests there is some slippage between legal definitions and community understandings of what constitutes sexual harassment. Moreover, while sexual harassment is often seen by the community and within organisations as the fault of one aberrant individual, in certain workplace contexts sexual harassment is used to ‘police the gender borders’, that is to exclude women and men who do not conform to the dominant workplace gender norms. This type of sexual harassment is a collective form of behaviour often perpetrated by co-workers in male-dominated workplaces which is designed to humiliate ‘outsiders’ so they appear incompetent and will be forced to leave the organisation. While much previous research that has focused on this type of sexual harassment has taken place in military and policing settings, our emerging findings suggest that it is present in a far broader range of workplace contexts. Prevention of this form of sexual harassment is challenging and goes to the heart of organisational culture and work organisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibration analysis has been a prime tool in condition monitoring of rotating machines, however, its application to internal combustion engines remains a challenge because engine vibration signatures are highly non-stationary that are not suitable for popular spectrum-based analysis. Signal-to-noise ratio is a main concern in engine signature analysis due to severe background noise being generated by consecutive mechanical events, such as combustion, valve opening and closing, especially in multi-cylinder engines. Acoustic Emission (AE) has been found to give excellent signal-to-noise ratio allowing discrimination of fine detail of normal or abnormal events during a given cycle. AE has been used to detect faults, such as exhaust valve leakage, fuel injection behaviour, and aspects of the combustion process. This paper presents a review of AE application to diesel engine monitoring and preliminary investigation of AE signature measured on an 18-cylinder diesel engine. AE is compared with vibration acceleration for varying operating conditions: load and speed. Frequency characteristics of AE from those events are analysed in time-frequency domain via short time Fourier trasform. The result shows a great potential of AE analysis for detection of various defects in diesel engines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an innovative prognostics model based on health state probability estimation embedded in the closed loop diagnostic and prognostic system. To employ an appropriate classifier for health state probability estimation in the proposed prognostic model, the comparative intelligent diagnostic tests were conducted using five different classifiers applied to the progressive fault levels of three faults in HP-LNG pump. Two sets of impeller-rubbing data were employed for the prediction of pump remnant life based on estimation of discrete health state probability using an outstanding capability of SVM and a feature selection technique. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.