202 resultados para energy system
Resumo:
Restoring a large-scale power system has always been a complicated and important issue. A lot of research work has been done on different aspects of the whole power system restoration procedure. However, more time will be required to complete the power system restoration process in an actual situation if accurate and real-time system data cannot be obtained. With the development of the wide area monitoring system (WAMS), power system operators are capable of accessing to more accurate data in the restoration stage after a major outage. The ultimate goal of the system restoration is to restore as much load as possible while in the shortest period of time after a blackout, and the restorable load can be estimated by employing WAMS. Moreover, discrete restorable loads are employed considering the limited number of circuit-breaker operations and the practical topology of distribution systems. In this work, a restorable load estimation method is proposed employing WAMS data after the network frame has been reenergized, and WAMS is also employed to monitor the system parameters in case the newly recovered system becomes unstable again. The proposed method has been validated with the New England 39-Bus system and an actual power system in Guangzhou, China.
Resumo:
Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).
Resumo:
The well-known power system stabilizer (PSS) is used to generate supplementary control signals for the excitation system of a generator so as to damp low frequency oscillations in the power system concerned. Up to now, various kinds of PSS design methods have been proposed and some of them applied in actual power systems with different degrees. Given this background, the small-disturbance eigenvalue analysis and large-disturbance dynamic simulations in the time domain are carried out to evaluate the performances of four different PSS design methods, including the Conventional PSS (CPSS), Single-Neuron PSS (SNPSS), Adaptive PSS (APSS) and Multi-band PSS (MBPSS). To make the comparisons equitable, the parameters of the four kinds of PSSs are all determined by the steepest descent method. Finally, an 8-unit 24-bus power system is employed to demonstrate the performances of the four kinds of PSSs by the well-established eigenvalue analysis as well as numerous digital simulations, and some useful conclusions obtained.
Resumo:
This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie–Shahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.
Resumo:
Reasons for performing study: Many domestic horses and ponies are sedentary and obese due to confinement to small paddocks and stables and a diet of infrequent, high-energy rations. Severe health consequences can be associated with this altered lifestyle. Objectives: The aims of this study were to investigate the ability of horses to learn to use a dynamic feeder system and determine the movement and behavioural responses of horses to the novel system. Methods: A dynamic feed station was developed to encourage horses to exercise in order to access ad libitum hay. Five pairs of horses (n = 10) were studied using a randomised crossover design with each pair studied in a control paddock containing a standard hay feeder and an experimental paddock containing the novel hay feeder. Horse movement was monitored by a global positioning system (GPS) and horses observed and their ability to learn to use the system and the behavioural responses to its use assessed. Results: With initial human intervention all horses used the novel feeder within 1 h. Some aggressive behaviour was observed between horses not well matched in dominance behaviour. The median distance walked by the horses was less (P = 0.002) during a 4 h period (117 [57–185] m) in the control paddock than in the experimental paddock (630 [509–719] m). Conclusions: The use of an automated feeding system promotes increased activity levels in horses housed in small paddocks, compared with a stationary feeder.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
Recent advances in computational geodynamics are applied to explore the link between Earth’s heat, its chemistry and its mechanical behavior. Computational thermal-mechanical solutions are now allowing us to understand Earth patterns by solving the basic physics of heat transfer. This approach is currently used to solve basic convection patterns of terrestrial planets. Applying the same methodology to smaller scales delivers promising similarities between observed and predicted structures which are often the site of mineral deposits. The new approach involves a fully coupled solution to the energy, momentum and continuity equations of the system at all scales, allowing the prediction of fractures, shear zones and other typical geological patterns out of a randomly perturbed initial state. The results of this approach are linking a global geodynamic mechanical framework over regional-scale mineral deposits down to the underlying micro-scale processes. Ongoing work includes the challenge of incorporating chemistry into the formulation.
Resumo:
In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.
Resumo:
Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM
Resumo:
Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.
Resumo:
The aims of this project is to develop demand side response model which assists electricity consumers who are exposed to the market price through aggregator to manage the air-conditioning peak electricity demand. The main contribution of this research is to show how consumers can optimise the energy cost caused by the air-conditioning load considering the electricity market price and network overload. The model is tested with selected characteristics of the room, Queensland electricity market data from Australian Energy Market Operator and data from the Bureau of Statistics on temperatures in Brisbane, during weekdays on hot days from 2011 - 2012.
Resumo:
This paper proposes a new controller for the excitation system to improve rotor angle stability. The proposed controller uses energy function to predict desired flux for the generator to achieve improved first swing stability and enhanced system damping. The controller is designed through predicting the desired value of flux for the future step of the system and then obtaining appropriate supplementary control input for the excitation system. The simulations are performed on Single-Machine-Infinite-Bus system and the results verify the efficiency of the controller. The proposed method facilitates the excitation system with a feasible and reliable controller for severe disturbances.
Resumo:
The IEC 61850 family of standards for substation communication systems were released in the early 2000s, and include IEC 61850-8-1 and IEC 61850-9-2 that enable Ethernet to be used for process-level connections between transmission substation switchyards and control rooms. This paper presents an investigation of process bus protection performance, as the in-service behavior of multi-function process buses is largely unknown. An experimental approach was adopted that used a Real Time Digital Simulator and 'live' substation automation devices. The effect of sampling synchronization error and network traffic on transformer differential protection performance was assessed and compared to conventional hard-wired connections. Ethernet was used for all sampled value measurements, circuit breaker tripping, transformer tap-changer position reports and Precision Time Protocol synchronization of sampled value merging unit sampling. Test results showed that the protection relay under investigation operated correctly with process bus network traffic approaching 100% capacity. The protection system was not adversely affected by synchronizing errors significantly larger than the standards permit, suggesting these requirements may be overly conservative. This 'closed loop' approach, using substation automation hardware, validated the operation of protection relays under extreme conditions. Digital connections using a single shared Ethernet network outperformed conventional hard-wired solutions.
Resumo:
Multi-Objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the thermoeconomic and Environmental aspects have been considered, simultaneously. The environmental objective function has been defined and expressed in cost terms. One of the most suitable optimization techniques developed using a particular class of search algorithms known as; Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used here. This approach has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of fuzzy decision-making with the aid of Bellman-Zadeh approach has been presented and a final optimal solution has been introduced.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.