487 resultados para edge detection


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual localization systems that are practical for autonomous vehicles in outdoor industrial applications must perform reliably in a wide range of conditions. Changing outdoor conditions cause difficulty by drastically altering the information available in the camera images. To confront the problem, we have developed a visual localization system that uses a surveyed three-dimensional (3D)-edge map of permanent structures in the environment. The map has the invariant properties necessary to achieve long-term robust operation. Previous 3D-edge map localization systems usually maintain a single pose hypothesis, making it difficult to initialize without an accurate prior pose estimate and also making them susceptible to misalignment with unmapped edges detected in the camera image. A multihypothesis particle filter is employed here to perform the initialization procedure with significant uncertainty in the vehicle's initial pose. A novel observation function for the particle filter is developed and evaluated against two existing functions. The new function is shown to further improve the abilities of the particle filter to converge given a very coarse estimate of the vehicle's initial pose. An intelligent exposure control algorithm is also developed that improves the quality of the pertinent information in the image. Results gathered over an entire sunny day and also during rainy weather illustrate that the localization system can operate in a wide range of outdoor conditions. The conclusion is that an invariant map, a robust multihypothesis localization algorithm, and an intelligent exposure control algorithm all combine to enable reliable visual localization through challenging outdoor conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robust texture recognition in underwater image sequences for marine pest population control such as Crown-Of-Thorns Starfish (COTS) is a relatively unexplored area of research. Typically, humans count COTS by laboriously processing individual images taken during surveys. Being able to autonomously collect and process images of reef habitat and segment out the various marine biota holds the promise of allowing researchers to gain a greater understanding of the marine ecosystem and evaluate the impact of different environmental variables. This research applies and extends the use of Local Binary Patterns (LBP) as a method for texture-based identification of COTS from survey images. The performance and accuracy of the algorithms are evaluated on a image data set taken on the Great Barrier Reef.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion has been examined in biology to be a critical component for obstacle avoidance and navigation. In particular, optical flow is a powerful motion cue that has been exploited in many biological systems for survival. In this paper, we investigate an obstacle detection system that uses optical flow to obtain range information to objects. Our experimental results demonstrate that optical flow is capable of providing good obstacle information but has obvious failure modes. We acknowledge that our optical flow system has certain disadvantages and cannot be solely used for navigation. Instead, we believe that optical flow is a critical visual subsystem used when moving at reason- able speeds. When combined with other visual subsystems, considerable synergy can result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RatSLAM system can perform vision based SLAM using a computational model of the rodent hippocampus. When the number of pose cells used to represent space in RatSLAM is reduced, artifacts are introduced that hinder its use for goal directed navigation. This paper describes a new component for the RatSLAM system called an experience map, which provides a coherent representation for goal directed navigation. Results are presented for two sets of real world experiments, including comparison with the original goal memory system's performance in the same environment. Preliminary results are also presented demonstrating the ability of the experience map to adapt to simple short term changes in the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustically, car cabins are extremely noisy and as a consequence audio-only, in-car voice recognition systems perform poorly. As the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem by using audio visual automatic speech recognition (AVASR). However, implementing AVASR requires a system being able to accurately locate and track the drivers face and lip area in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using the AVICAR [1] in-car database, we show that the Viola- Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose for audio-visual speech recognition system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secret-sharing schemes describe methods to securely share a secret among a group of participants. A properly constructed secret-sharing scheme guarantees that the share belonging to one participant does not reveal anything about the shares of others or even the secret itself. Besides the obvious feature which is to distribute a secret, secret-sharing schemes have also been used in secure multi-party computations and redundant residue number systems for error correction codes. In this paper, we propose that the secret-sharing scheme be used as a primitive in a Network-based Intrusion Detection System (NIDS) to detect attacks in encrypted networks. Encrypted networks such as Virtual Private Networks (VPNs) fully encrypt network traffic which can include both malicious and non-malicious traffic. Traditional NIDS cannot monitor encrypted traffic. Our work uses a combination of Shamir's secret-sharing scheme and randomised network proxies to enable a traditional NIDS to function normally in a VPN environment. In this paper, we introduce a novel protocol that utilises a secret-sharing scheme to detect attacks in encrypted networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-driving related cognitive load and variations of emotional state may impact a driver’s capability to control a vehicle and introduces driving errors. Availability of reliable cognitive load and emotion detection in drivers would benefit the design of active safety systems and other intelligent in-vehicle interfaces. In this study, speech produced by 68 subjects while driving in urban areas is analyzed. A particular focus is on speech production differences in two secondary cognitive tasks, interactions with a co-driver and calls to automated spoken dialog systems (SDS), and two emotional states during the SDS interactions - neutral/negative. A number of speech parameters are found to vary across the cognitive/emotion classes. Suitability of selected cepstral- and production-based features for automatic cognitive task/emotion classification is investigated. A fusion of GMM/SVM classifiers yields an accuracy of 94.3% in cognitive task and 81.3% in emotion classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gabor representations have been widely used in facial analysis (face recognition, face detection and facial expression detection) due to their biological relevance and computational properties. Two popular Gabor representations used in literature are: 1) Log-Gabor and 2) Gabor energy filters. Even though these representations are somewhat similar, they also have distinct differences as the Log-Gabor filters mimic the simple cells in the visual cortex while the Gabor energy filters emulate the complex cells, which causes subtle differences in the responses. In this paper, we analyze the difference between these two Gabor representations and quantify these differences on the task of facial action unit (AU) detection. In our experiments conducted on the Cohn-Kanade dataset, we report an average area underneath the ROC curve (A`) of 92.60% across 17 AUs for the Gabor energy filters, while the Log-Gabor representation achieved an average A` of 96.11%. This result suggests that small spatial differences that the Log-Gabor filters pick up on are more useful for AU detection than the differences in contours and edges that the Gabor energy filters extract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of voice activity is a challenging problem, especially when the level of acoustic noise is high. Most current approaches only utilise the audio signal, making them susceptible to acoustic noise. An obvious approach to overcome this is to use the visual modality. The current state-of-the-art visual feature extraction technique is one that uses a cascade of visual features (i.e. 2D-DCT, feature mean normalisation, interstep LDA). In this paper, we investigate the effectiveness of this technique for the task of visual voice activity detection (VAD), and analyse each stage of the cascade and quantify the relative improvement in performance gained by each successive stage. The experiments were conducted on the CUAVE database and our results highlight that the dynamics of the visual modality can be used to good effect to improve visual voice activity detection performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The previous investigations have shown that the modal strain energy correlation method, MSEC, could successfully identify the damage of truss bridge structures. However, it has to incorporate the sensitivity matrix to estimate damage and is not reliable in certain damage detection cases. This paper presents an improved MSEC method where the prediction of modal strain energy change vector is differently obtained by running the eigensolutions on-line in optimisation iterations. The particular trail damage treatment group maximising the fitness function close to unity is identified as the detected damage location. This improvement is then compared with the original MSEC method along with other typical correlation-based methods on the finite element model of a simple truss bridge. The contributions to damage detection accuracy of each considered mode is also weighed and discussed. The iterative searching process is operated by using genetic algorithm. The results demonstrate that the improved MSEC method suffices the demand in detecting the damage of truss bridge structures, even when noised measurement is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) are temporary wireless networks useful in emergency rescue services, battlefields operations, mobile conferencing and a variety of other useful applications. Due to dynamic nature and lack of centralized monitoring points, these networks are highly vulnerable to attacks. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. We take benefit of the clustering concept in MANETs for the effective communication between nodes, where each cluster involves a number of member nodes and is managed by a cluster-head. It can be taken as an advantage in these battery and memory constrained networks for the purpose of intrusion detection, by separating tasks for the head and member nodes, at the same time providing opportunity for launching collaborative detection approach. The clustering schemes are generally used for the routing purposes to enhance the route efficiency. However, the effect of change of a cluster tends to change the route; thus degrades the performance. This paper presents a low overhead clustering algorithm for the benefit of detecting intrusion rather than efficient routing. It also discusses the intrusion detection techniques with the help of this simplified clustering scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Denial of Services DDoS, attacks has become one of the biggest threats for resources over Internet. Purpose of these attacks is to make servers deny from providing services to legitimate users. These attacks are also used for occupying media bandwidth. Currently intrusion detection systems can just detect the attacks but cannot prevent / track the location of intruders. Some schemes also prevent the attacks by simply discarding attack packets, which saves victim from attack, but still network bandwidth is wasted. In our opinion, DDoS requires a distributed solution to save wastage of resources. The paper, presents a system that helps us not only in detecting such attacks but also helps in tracing and blocking (to save the bandwidth as well) the multiple intruders using Intelligent Software Agents. The system gives dynamic response and can be integrated with the existing network defense systems without disturbing existing Internet model. We have implemented an agent based networking monitoring system in this regard.