135 resultados para diagnostic fluorescent PCR
Resumo:
Background Rapid diagnostic tests (RDTs) for detection of Plasmodium falciparum infection that target P. falciparum histidine-rich protein 2 (PfHRP2), a protein that circulates in the blood of patients infected with this species of malaria, are widely used to guide case management. Understanding determinants of PfHRP2 availability in circulation is therefore essential to understanding the performance of PfHRP2-detecting RDTs. Methods The possibility that pre-formed host anti-PfHRP2 antibodies may block target antigen detection, thereby causing false negative test results was investigated in this study. Results Anti-PfHRP2 antibodies were detected in 19/75 (25%) of plasma samples collected from patients with acute malaria from Cambodia, Nigeria and the Philippines, as well as in 3/28 (10.7%) asymptomatic Solomon Islands residents. Pre-incubation of plasma samples from subjects with high-titre anti-PfHRP2 antibodies with soluble PfHRP2 blocked the detection of the target antigen on two of the three brands of RDTs tested, leading to false negative results. Pre-incubation of the plasma with intact parasitized erythrocytes resulted in a reduction of band intensity at the highest parasite density, and a reduction of lower detection threshold by ten-fold on all three brands of RDTs tested. Conclusions These observations indicate possible reduced sensitivity for diagnosis of P. falciparum malaria using PfHRP2-detecting RDTs among people with high levels of specific antibodies and low density infection, as well as possible interference with tests configured to detect soluble PfHRP2 in saliva or urine samples. Further investigations are required to assess the impact of pre-formed anti-PfHRP2 antibodies on RDT performance in different transmission settings.
Resumo:
Background Sub-microscopic (SM) Plasmodium infections represent transmission reservoirs that could jeopardise malaria elimination goals. A better understanding of the epidemiology of these infections and factors contributing to their occurrence will inform effective elimination strategies. While the epidemiology of SM P. falciparum infections has been documented, that of SM P. vivax infections has not been summarised. The objective of this study is to address this deficiency. Methodology/Principal Findings A systematic search of PubMed was conducted, and results of both light microscopy (LM) and polymerase chain reaction (PCR)-based diagnostic tests for P. vivax from 44 cross-sectional surveys or screening studies of clinical malaria suspects were analysed. Analysis revealed that SM P. vivax is prevalent across different geographic areas with varying transmission intensities. On average, the prevalence of SM P. vivax in cross-sectional surveys was 10.9%, constituting 67.0% of all P. vivax infections detected by PCR. The relative proportion of SM P. vivax is significantly higher than that of the sympatric P. falciparum in these settings. A positive relationship exists between PCR and LM P. vivax prevalence, while there is a negative relationship between the proportion of SM P. vivax and the LM prevalence for P. vivax. Amongst clinical malaria suspects, however, SM P. vivax was not identified. Conclusions/Significance SM P. vivax is prevalent across different geographic areas, particularly areas with relatively low transmission intensity. Diagnostic tools with sensitivity greater than that of LM are required for detecting these infection reservoirs. In contrast, SM P. vivax is not prevalent in clinical malaria suspects, supporting the recommended use of quality LM and rapid diagnostic tests in clinical case management. These findings enable malaria control and elimination programs to estimate the prevalence and proportion of SM P. vivax infections in their settings, and develop appropriate elimination strategies to tackle SM P. vivax to interrupt transmission.
Resumo:
The use of compact fluorescent lamps (CFLs) in domestic residences has increased rapidly due to their higher energy efficiency and longer life expectancy when compared with traditional incandescent light bulbs. Through measurement of illuminance, actual power and apparent power, the actual efficacy and associated power factor of CFLs are studied in this paper. It is found that for an individual CFL, although its power consumption and lighting output (i.e. luminous flux) may be higher or lower than the stated values provided by the lighting manufacturers, the actual efficacy would most likely be equal to or better than the efficacy calculated from the given rated power and lumen from the manufacturers. The typical power factor for CFLs was 0.63.
Green-fluorescent protein facilitates rapid in vivo detection of genetically transformed plant cells
Resumo:
Early detection of plant transformation events is necessary for the rapid establishment and optimization of plant transformation protocols. We have assessed modified versions of the green fluorescent protein (GFP) from Aequorea victoria as early reporters of plant transformation using a dissecting fluorescence microscope with appropriate filters. Gfp-expressing cells from four different plant species (sugarcane, maize, lettuce, and tobacco) were readily distinguished, following either Agrobacterium-mediated or particle bombardment-mediated transformation. The identification of gfp-expressing sugarcane cells allowed for the elimination of a high proportion of non-expressing explants and also enabled visual selection of dividing transgenic cells, an early step in the generation of transgenic organisms. The recovery of transgenic cell clusters was streamlined by the ability to visualize gfp-expressing tissues in vitro.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. Methods: In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. Results: When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. Conclusions: In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.
Resumo:
The present invention relates generally to methods for diagnosing and treating infectious diseases and other conditions related thereto. More particularly, the present invention relates to methods for determining the presence of organisms of the Chlamydiaceae family in a subject, including species of Chlamydia, and to methods for determining the stage of an infection caused by such organisms. The present invention also relates to kits for use with the diagnostic methods. The methods and kits of the present invention are particularly useful in relation to human and non-human, i.e. veterinary subjects. The present invention further relates to methods for identifying proteins or nucleic acid sequences associated with chlamydial infection in a subject. Such proteins or nucleic acid sequences are not only useful in relation to the diagnostic methods of the invention but are also useful in the development of methods and agents for preventing and/or treating chlamydial infection in a subject, such as but not limited to, immunotherapeutic methods and agents.
Resumo:
Mutations of UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetyl galactosaminyl transferase 3 (GALNT3) result in familial tumoural calcinosis (FTC) and the hyperostosis-hyperphosphataemia syndrome (HHS), which are autosomal recessive disorders characterised by soft-tissue calcification and hyperphosphataemia. To facilitate in vivo studies of these heritable disorders of phosphate homeostasis, we embarked on establishing a mouse model by assessing progeny of mice treated with the chemical mutagen N-ethyl-N-nitrosourea (ENU), and identified a mutant mouse, TCAL, with autosomal recessive inheritance of ectopic calcification, which involved multiple tissues, and hyperphosphataemia; the phenotype was designated TCAL and the locus, Tcal. TCAL males were infertile with loss of Sertoli cells and spermatozoa, and increased testicular apoptosis. Genetic mapping localized Tcal to chromosome 2 (62.64-71.11 Mb) which contained the Galnt3. DNA sequence analysis identified a Galnt3 missense mutation (Trp589Arg) in TCAL mice. Transient transfection of wild-type and mutant Galnt3-enhanced green fluorescent protein (EGFP) constructs in COS-7 cells revealed endoplasmic reticulum retention of the Trp589Arg mutant and Western blot analysis of kidney homogenates demonstrated defective glycosylation of Galnt3 in Tcal/Tcal mice. Tcal/Tcal mice had normal plasma calcium and parathyroid hormone concentrations; decreased alkaline phosphatase activity and intact Fgf23 concentrations; and elevation of circulating 1,25-dihydroxyvitamin D. Quantitative reverse transcriptase-PCR (qRT-PCR) revealed that Tcal/Tcal mice had increased expression of Galnt3 and Fgf23 in bone, but that renal expression of Klotho, 25-hydroxyvitamin D-1α-hydroxylase (Cyp27b1), and the sodium-phosphate co-transporters type-IIa and -IIc was similar to that in wild-type mice. Thus, TCAL mice have the phenotypic features of FTC and HHS, and provide a model for these disorders of phosphate metabolism. © 2012 Esapa et al.
Resumo:
Background: Changing perspectives on the natural history of celiac disease (CD), new serology and genetic tests, and amended histological criteria for diagnosis cast doubt on past prevalence estimates for CD. We set out to establish a more accurate prevalence estimate for CD using a novel serogenetic approach.Methods: The human leukocyte antigen (HLA)-DQ genotype was determined in 356 patients with 'biopsy-confirmed' CD, and in two age-stratified, randomly selected community cohorts of 1,390 women and 1,158 men. Sera were screened for CD-specific serology.Results: Only five 'biopsy-confirmed' patients with CD did not possess the susceptibility alleles HLA-DQ2.5, DQ8, or DQ2.2, and four of these were misdiagnoses. HLA-DQ2.5, DQ8, or DQ2.2 was present in 56% of all women and men in the community cohorts. Transglutaminase (TG)-2 IgA and composite TG2/deamidated gliadin peptide (DGP) IgA/IgG were abnormal in 4.6% and 5.6%, respectively, of the community women and 6.9% and 6.9%, respectively, of the community men, but in the screen-positive group, only 71% and 75%, respectively, of women and 65% and 63%, respectively, of men possessed HLA-DQ2.5, DQ8, or DQ2.2. Medical review was possible for 41% of seropositive women and 50% of seropositive men, and led to biopsy-confirmed CD in 10 women (0.7%) and 6 men (0.5%), but based on relative risk for HLA-DQ2.5, DQ8, or DQ2.2 in all TG2 IgA or TG2/DGP IgA/IgG screen-positive subjects, CD affected 1.3% or 1.9%, respectively, of females and 1.3% or 1.2%, respectively, of men. Serogenetic data from these community cohorts indicated that testing screen positives for HLA-DQ, or carrying out HLA-DQ and further serology, could have reduced unnecessary gastroscopies due to false-positive serology by at least 40% and by over 70%, respectively.Conclusions: Screening with TG2 IgA serology and requiring biopsy confirmation caused the community prevalence of CD to be substantially underestimated. Testing for HLA-DQ genes and confirmatory serology could reduce the numbers of unnecessary gastroscopies. © 2013 Anderson et al.; licensee BioMed Central Ltd.
Resumo:
In stark contrast to its horticultural origins, modern genetics is an extremely technology-driven field. Almost all the major advances in the field over the past 20 years have followed technological developments that have permitted change in study designs. The development of PCR in the 1980s led to RFLP mapping of monogenic diseases. The development of fluorescent-tagged genotyping methods led to linkage mapping approaches for common diseases that dominated the 1990s. The development of microarray SNP genotyping has led to the genome-wide association study era of the new millennium. And now the development of next-generation sequencing technologies is about to open up a new era of gene-mapping, enabling many potential new study designs. This review aims to present the strengths and weaknesses of the current approaches, and present some new ideas about gene-mapping approaches that are likely to advance our knowledge of the genes involved in heritable bone traits such as bone mineral density (BMD) and fracture.
Resumo:
The risk of developing osteoporosis is determined by the interaction of several mostly unknown genes and environmental factors. Genetic studies in osteoporosis have largely focussed on association studies of a small number of candidate genes, with few linkage studies performed, and large areas of the genome remaining unexplored. Identifying the genes involved in osteoporosis would be a major advance in our understanding of the causation of the disease, and lead to advances in diagnosis, risk prediction, and potentially preventive and therapeutic measures.
Resumo:
Hand, foot and mouth disease (HFMD) is a contagious viral disease that frequently affects infants and children and present with blisters and flu-like symptoms. This disease is caused by a group of enteroviruses such as enterovirus 71 (EV71) and coxsackievirus A16 (CA16). However, unlike other HFMD causing enteroviruses, EV71 have also been shown to be associated with more severe clinical manifestation such as aseptic meningitis, brainstem and cerebellar encephalitis which may lead to cardiopulmonary failure and death. Clinically, HFMD caused by EV71 is indistinguishable from other HFMD causing enteroviruses such as CA16. Molecular diagnosis methods such as the use of real-time PCR has been used commonly for the identification of EV71. In this study, two platforms namely the real-time PCR and the droplet digital PCR were compared for the detection quantitation of known EV71 viral copy number. The results reveal accurate and consistent results between the two platforms. In summary, the droplet digital PCR was demonstrated to be a promising technology for the identification and quantitation of EV71 viral copy number.
Resumo:
Interstitial fibrosis, a histological process common to many kidney diseases, is the precursor state to end stage kidney disease, a devastating and costly outcome for the patient and the health system. Fibrosis is historically associated with chronic kidney disease (CKD) but emerging evidence is now linking many forms of acute kidney disease (AKD) with the development of CKD. Indeed, we and others have observed at least some degree of fibrosis in up to 50% of clinically defined cases of AKD. Epithelial cells of the proximal tubule (PTEC) are central in the development of kidney interstitial fibrosis. We combine the novel techniques of laser capture microdissection and multiplex-tandem PCR to identify and quantitate “real time” gene transcription profiles of purified PTEC isolated from human kidney biopsies that describe signaling pathways associated with this pathological fibrotic process. Our results: (i) confirm previous in-vitro and animal model studies; kidney injury molecule-1 is up-regulated in patients with acute tubular injury, inflammation, neutrophil infiltration and a range of chronic disease diagnoses, (ii) provide data to inform treatment; complement component 3 expression correlates with inflammation and acute tubular injury, (iii) identify potential new biomarkers; proline 4-hydroxylase transcription is down-regulated and vimentin is up-regulated across kidney diseases, (iv) describe previously unrecognized feedback mechanisms within PTEC; Smad-3 is down-regulated in many kidney diseases suggesting a possible negative feedback loop for TGF-β in the disease state, whilst tight junction protein-1 is up-regulated in many kidney diseases, suggesting feedback interactions with vimentin expression. These data demonstrate that the combined techniques of laser capture microdissection and multiplex-tandem PCR have the power to study molecular signaling within single cell populations derived from clinically sourced tissue.
Resumo:
Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography-mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future
Resumo:
IMPORTANCE Patients with chest pain represent a high health care burden, but it may be possible to identify a patient group with a low short-term risk of adverse cardiac events who are suitable for early discharge. OBJECTIVE To compare the effectiveness of a rapid diagnostic pathway with a standard-care diagnostic pathway for the assessment of patients with possible cardiac chest pain in a usual clinical practice setting. DESIGN, SETTING, AND PARTICIPANTS A single-center, randomized parallel-group trial with blinded outcome assessments was conducted in an academic general and tertiary hospital. Participants included adults with acute chest pain consistent with acute coronary syndrome for whom the attending physician planned further observation and troponin testing. Patient recruitment occurred from October 11, 2010, to July 4, 2012, with a 30-day follow-up. INTERVENTIONS An experimental pathway using an accelerated diagnostic protocol (Thrombolysis in Myocardial Infarction score, 0; electrocardiography; and 0- and 2-hour troponin tests) or a standard-care pathway (troponin test on arrival at hospital, prolonged observation, and a second troponin test 6-12 hours after onset of pain) serving as the control. MAIN OUTCOMES AND MEASURES Discharge from the hospital within 6 hours without a major adverse cardiac event occurring within 30 days. RESULTS Fifty-two of 270 patients in the experimental group were successfully discharged within 6 hours compared with 30 of 272 patients in the control group (19.3% vs 11.0%; odds ratio, 1.92; 95% CI, 1.18-3.13; P = .008). It required 20 hours to discharge the same proportion of patients from the control group as achieved in the experimental group within 6 hours. In the experimental group, 35 additional patients (12.9%) were classified as low risk but admitted to an inpatient ward for cardiac investigation. None of the 35 patients received a diagnosis of acute coronary syndrome after inpatient evaluation. CONCLUSIONS AND RELEVANCE Using the accelerated diagnostic protocol in the experimental pathway almost doubled the proportion of patients with chest pain discharged early. Clinicians could discharge approximately 1 of 5 patients with chest pain to outpatient follow-up monitoring in less than 6 hours. This diagnostic strategy could be easily replicated in other centers because no extra resources are required.