281 resultados para decision support systems, GIS, interpolation, multiple regression
Resumo:
Movement of malaria across international borders poses a major obstacle to achieving malaria elimination in the 34 countries that have committed to this goal. In border areas, malaria prevalence is often higher than in other areas due to lower access to health services, treatment-seeking behaviour of marginalised populations that typically inhabit border areas, difficulties in deploying prevention programs to hard-to-reach communities, often in difficult terrain, and constant movement of people across porous national boundaries. Malaria elimination in border areas will be challenging, and key to addressing the challenges is strengthening of surveillance activities for rapid identification of any importation or reintroduction of malaria. This could involve taking advantage of technological advances, such as spatial decision support systems, which can be deployed to assist program managers to carry out preventive and reactive measures, and mobile phone technology, which can be used to capture the movement of people in the border areas and likely sources of malaria importation. Additionally, joint collaboration in the prevention and control of cross-border malaria by neighbouring countries, and reinforcement of early diagnosis and prompt treatment are ways forward in addressing the problem of cross-border malaria.
Resumo:
Public submission # 247 to the McKeon Review. The submission addresses the terms of reference on: How can we optimise translation of health and medical research into better health and wellbeing? (Terms of Reference 4, 8, 9, 10 and 11)
Resumo:
Jakarta, Indonesia’s chronic housing shortage poses multiple challenges for contemporary policy-makers. While it may be in the city’s interest to increase the availability of housing, there is limited land to do so. Market pressures, in tandem with government’s desire for housing availability, demand consideration of even marginal lands, such as those within floodplains, for development. Increasingly, planning for a flood resilient Jakarta is complicated by a number of factors, including: the city is highly urbanized and land use data is limited; flood management is technically complex, creating potential barriers to engagement for both decision-makers and the public; inherent uncertainty exists throughout modelling efforts, central to management; and risk and liability for infrastructure investments is unclear. These obstacles require localized watershed-level participatory planning to address risks of flooding where possible and reduce the likelihood that informal settlements occur in areas of extreme risk. This paper presents a preliminary scoping study for determination of an effective participatory planning method to encourage more resilient development. First, the scoping study provides background relevant to the challenges faced in planning for contemporary Jakarta. Second, the study examines the current use of decision-support tools, such as Geographic Information Systems (GIS), in planning for Jakarta. Existing capacity in the use of GIS allows for consideration of the use of an emerging method of community consultation - Multi-Criteria Decision-Making (MCDM) support systems infused with geospatial information - to aid in engagement with the public and improve decision-making outcomes. While these methods have been used in Australia to promote stakeholder engagement in urban intensification, the planned research will be an early introduction of the method to Indonesia. As a consequence of this intervention, it is expected that planning activities will result in a more resilient city, capable of engaging with disaster risk management in a more effective manner.
Resumo:
The early stages of the building design process are when the most far reaching decisions are made regarding the configuration of the proposed project. This paper examines methods of providing decision support to building designers across multiple disciplines during the early stage of design. The level of detail supported is at the massing study stage where the basic envelope of the project is being defined. The block outlines on the building envelope are sliced into floors. Within a floor the only spatial divisions supported are the “user” space and the building core. The building core includes vertical transportation systems, emergency egress and vertical duct runs. The current focus of the project described in the paper is multi-storey mixed use office/residential buildings with car parking. This is a common type of building in redevelopment projects within and adjacent to the central business districts of major Australian cities. The key design parameters for system selection across the major systems in multi-storey building projects - architectural, structural, HVAC, vertical transportation, electrical distribution, fire protection, hydraulics and cost – are examined. These have been identified through literature research and discussions with building designers from various disciplines. This information is being encoded in decision support tools. The decision support tools communicate through a shared database to ensure that the relevant information is shared across all of the disciplines. An internal data model has been developed to support the very early design phase and the high level system descriptions required. A mapping to IFC 2x2 has also been defined to ensure that this early information is available at later stages of the design process.
Resumo:
This study examines the impact of utilising a Decision Support System (DSS) in a practical health planning study. Specifically, it presents a real-world case of a community-based initiative aiming to improve overall public health outcomes. Previous studies have emphasised that because of a lack of effective information, systems and an absence of frameworks for making informed decisions in health planning, it has become imperative to develop innovative approaches and methods in health planning practice. Online Geographical Information Systems (GIS) has been suggested as one of the innovative methods that will inform decision-makers and improve the overall health planning process. However, a number of gaps in knowledge have been identified within health planning practice: lack of methods to develop these tools in a collaborative manner; lack of capacity to use the GIS application among health decision-makers perspectives, and lack of understanding about the potential impact of such systems on users. This study addresses the abovementioned gaps and introduces an online GIS-based Health Decision Support System (HDSS), which has been developed to improve collaborative health planning in the Logan-Beaudesert region of Queensland, Australia. The study demonstrates a participatory and iterative approach undertaken to design and develop the HDSS. It then explores the perceived user satisfaction and impact of the tool on a selected group of health decision makers. Finally, it illustrates how decision-making processes have changed since its implementation. The overall findings suggest that the online GIS-based HDSS is an effective tool, which has the potential to play an important role in the future in terms of improving local community health planning practice. However, the findings also indicate that decision-making processes are not merely informed by using the HDSS tool. Instead, they seem to enhance the overall sense of collaboration in health planning practice. Thus, to support the Healthy Cities approach, communities will need to encourage decision-making based on the use of evidence, participation and consensus, which subsequently transfers into informed actions.
Resumo:
Purpose – The rapidly changing role of capital city airports has placed demands on surrounding infrastructure. The need for infrastructure management and coordination is increasing as airports and cities grow and share common infrastructure frameworks. The purpose of this paper is to document the changing context in Australia, where the privatisation of airports has stimulated considerable land development with resulting pressures on surrounding infrastructure provision. It aims to describe a tool that is being developed to support decision-making between various stakeholders in the airport region. The use of planning support systems improves both communication and data transfer between stakeholders and provides a foundation for complex decisions on infrastructure. Design/methodology/approach – The research uses a case study approach and focuses on Brisbane International Airport and Brisbane City Council. The research is primarily descriptive and provides an empirical assessment of the challenges of developing and implementing planning support systems as a tool for governance and decision-making. Findings – The research assesses the challenges in implementing a common data platform for stakeholders. Agency data platforms and models, traditional roles in infrastructure planning, and integrating similar data platforms all provide barriers to sharing a common language. The use of a decision support system has to be shared by all stakeholders with a common platform that can be versatile enough to support scenarios and changing conditions. The use of iPadss for scenario modelling provides stakeholders the opportunity to interact, compare scenarios and views, and react with the modellers to explore other options. Originality/value – The research confirms that planning support systems have to be accessible and interactive by their users. The Airport City concept is a new and evolving focus for airport development and will place continuing pressure on infrastructure servicing. A coordinated and efficient approach to infrastructure decision-making is critical, and an interactive planning support system that can model infrastructure scenarios provides a sound tool for governance.
Resumo:
Over the last few decades, construction project performance has been evaluated due to the increase of delays, cost overruns and quality failures. Growing numbers of disputes, inharmonious working environments, conflict, blame cultures, and mismatches of objectives among project teams have been found to be contributory factors to poor project performance. Performance measurement (PM) approaches have been developed to overcome these issues, however, the comprehensiveness of PM as an overall approach is still criticised in terms of the iron triangle; namely time, cost, and quality. PM has primarily focused on objective measures, however, continuous improvement requires the inclusion of subjective measures, particularly contractor satisfaction (Co-S). It is challenging to deal with the two different groups of large and small-medium contractor satisfaction as to date, Co-S has not been extensively defined, primarily in developing countries such as Malaysia. Therefore, a Co-S model is developed in this research which aims to fulfil the current needs in the construction industry by integrating performance measures to address large and small-medium contractor perceptions. The positivist paradigm used in the research was adhered to by reviewing relevant literature and evaluating expert discussions on the research topic. It yielded a basis for the contractor satisfaction model (CoSMo) development which consists of three elements: contractor satisfaction (Co-S) dimensions; contributory factors and characteristics (project and participant). Using valid questionnaire results from 136 contractors in Malaysia lead to the prediction of several key factors of contractor satisfaction and to an examination of the relationships between elements. The relationships were examined through a series of sequential statistical analyses, namely correlation, one-way analysis of variance (ANOVA), t-tests and multiple regression analysis (MRA). Forward and backward MRAs were used to develop Co-S mathematical models. Sixteen Co-S models were developed for both large and small-medium contractors. These determined that the large contractor Malaysian Co-S was most affected by the conciseness of project scope and quality of the project brief. Contrastingly, Co-S for small-medium contractors was strongly affected by the efficiency of risk control in a project. The results of the research provide empirical evidence in support of the notion that appropriate communication systems in projects negatively contributes to large Co-S with respect to cost and profitability. The uniqueness of several Co-S predictors was also identified through a series of analyses on small-medium contractors. These contractors appear to be less satisfied than large contractors when participants lack effectiveness in timely authoritative decision-making and communication between project team members. Interestingly, the empirical results show that effective project health and safety measures are influencing factors in satisfying both large and small-medium contractors. The perspectives of large and small-medium contractors in respect to the performance of the entire project development were derived from the Co-S models. These were statistically validated and refined before a new Co-S model was developed. Developing such a unique model has the potential to increase project value and benefit all project participants. It is important to improve participant collaboration as it leads to better project performance. This study may encourage key project participants; such as client, consultant, subcontractor and supplier; to increase their attention to contractor needs in the development of a project. Recommendations for future research include investigating other participants‟ perspectives on CoSMo and the impact of the implementation of CoSMo in a project, since this study is focused purely on the contractor perspective.
Resumo:
Spatially-explicit modelling of grassland classes is important to site-specific planning for improving grassland and environmental management over large areas. In this study, a climate-based grassland classification model, the Comprehensive and Sequential Classification System (CSCS) was integrated with spatially interpolated climate data to classify grassland in Gansu province, China. The study area is characterized by complex topographic features imposed by plateaus, high mountains, basins and deserts. To improve the quality of the interpolated climate data and the quality of the spatial classification over this complex topography, three linear regression methods, namely an analytic method based on multiple regression and residues (AMMRR), a modification of the AMMRR method through adding the effect of slope and aspect to the interpolation analysis (M-AMMRR) and a method which replaces the IDW approach for residue interpolation in M-AMMRR with an ordinary kriging approach (I-AMMRR), for interpolating climate variables were evaluated. The interpolation outcomes from the best interpolation method were then used in the CSCS model to classify the grassland in the study area. Climate variables interpolated included the annual cumulative temperature and annual total precipitation. The results indicated that the AMMRR and M-AMMRR methods generated acceptable climate surfaces but the best model fit and cross validation result were achieved by the I-AMMRR method. Twenty-six grassland classes were classified for the study area. The four grassland vegetation classes that covered more than half of the total study area were "cool temperate-arid temperate zonal semi-desert", "cool temperate-humid forest steppe and deciduous broad-leaved forest", "temperate-extra-arid temperate zonal desert", and "frigid per-humid rain tundra and alpine meadow". The vegetation classification map generated in this study provides spatial information on the locations and extents of the different grassland classes. This information can be used to facilitate government agencies' decision-making in land-use planning and environmental management, and for vegetation and biodiversity conservation. The information can also be used to assist land managers in the estimation of safe carrying capacities which will help to prevent overgrazing and land degradation.
Resumo:
A matched case-control study of mortality to children under age five was conducted to consider associations with parents' socio-economic status and social support in the Farafenni Demographic Surveillance Site (DSS). Cases and controls were selected from Farafenni DSS, matched on date of birth, and parents were interviewed about personal resources and social networks. Parents with the lowest personal socio-economic status and social support were identified. Multivariate multinomial regression was used to consider whether the children of these parents were at increased risk of either infant or 1-4 mortality, in separate models using either parents' characteristics. There was no benefit found for higher SES or better social support with respect to child mortality. Children of fathers who had the poorest social support had lower 1-4 mortality risk (OR=0.52, p=0.037). Given that socio-economic status was not associated with child mortality, it seems unlikely that the explanation for the link between father's social support and mortality is linked to resource availability. Explanations for the risk effect of father's social ties may lie in decision-making around health maintenance and health care for children.
Resumo:
A successful urban management support system requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated transparent and open decision making mechanism. The paper emphasises the importance of integrated urban management to better tackle the climate change, and to achieve sustainable urban development and sound urban growth management. This paper introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for ubiquitous cities. The paper discusses the essential role of online collaborative decision making in urban and infrastructure planning, development and management, and advocates transparent, fully democratic and participatory mechanisms for an effective urban management system that is particularly suitable for ubiquitous cities. This paper also sheds light on some of the unclear processes of urban management of ubiquitous cities and online collaborative decision making, and reveals the key benefits of integrated and participatory mechanisms in successfully constructing sustainable ubiquitous cities.
Resumo:
This document provides the findings of an international review of investment decision-making practices in road asset management. Efforts were concentrated on identifying the strategic objectives of agencies in road asset management, establishing and understanding criteria different organisations adopted and ascertaining the exact methodologies used by different countries and international organisations. Road assets are powerful drivers of economic development and social equity. They also have significant impacts on the natural and man-made environment. The traditional definition of asset management is “A systematic process of maintaining, upgrading and operating physical assets cost effectively. It combines engineering principles with sound business practices and economic theory and it provides tools to facilitate a more organised, logical approach to decision-making” (US Dept. of Transportation, 1999). In recent years, the concept has been broadened to cover the complexity of decision making, based on a wider variety of policy considerations as well as social and environmental issues rather than is covered by Benefit-Cost analysis and pure technical considerations. Current international practices are summarised in table 2. It was evident that Engineering-economic analysis methods are well advanced to support decision-making. A range of tools available supports performance predicting of road assets and associated cost/benefit in technical context. The need for considering triple plus one bottom line of social, environmental and economic as well as political factors in decision-making is well understood by road agencies around the world. The techniques used to incorporate these however, are limited. Most countries adopt a scoring method, a goal achievement matrix or information collected from surveys. The greater uncertainty associated with these non-quantitative factors has generally not been taken into consideration. There is a gap between the capacities of the decision-making support systems and the requirements from decision-makers to make more rational and transparent decisions. The challenges faced in developing an integrated decision making framework are both procedural and conceptual. In operational terms, the framework should be easy to be understood and employed. In philosophical terms, the framework should be able to deal with challenging issues, such as uncertainty, time frame, network effects, model changes, while integrating cost and non-cost values into the evaluation. The choice of evaluation techniques depends on the feature of the problem at hand, on the aims of the analysis, and on the underlying information base At different management levels, the complexity in considering social, environmental, economic and political factor in decision-making is different. At higher the strategic planning level, more non-cost factors are involved. The complexity also varies based on the scope of the investment proposals. Road agencies traditionally place less emphasis on evaluation of maintenance works. In some cases, social equity, safety, environmental issues have been used in maintenance project selection. However, there is not a common base for the applications.
Resumo:
This document provides the findings of a national review of investment decision-making practices in road asset management. Efforts were concentrated on identifying the strategic objectives of agencies in road asset management, establishing and understanding criteria different organisations adopted and ascertaining the exact methodologies used by different sate road authorities. The investment objectives of Australian road authorities are based on triple-bottom line considerations (social, environmental, economic and political). In some cases, comparing with some social considerations, such as regional economic development, equity, and access to pubic service etc., Benefit-Cost Ratio has limited influence on the decision-making. Australian road authorities have developed various decision support tools. Although Multi-Criteria Analysis has been preliminarily used in case by case study, pavement management systems, which are primarily based on Benefit Cost Analysis, are still the main decision support tool. This situation is not compatible with the triple-bottom line objectives. There is need to fill the gap between decision support tools and decision-making itself. Different decision criteria should be adopted based on the contents of the work. Additional decision criteria, which are able to address social, environmental and political impacts, are needed to develop or identify. Environmental issue plays a more and more important role in decision-making. However, the criteria and respective weights in decision-making process are yet to be clearly identified. Social and political impacts resulted from road infrastructure investment can be identified through Community Perceptions Survey. With accumulative data, prediction models, which are similar as pavement performance models, can be established. Using these models, the decision-makers are able to foresee the social and political consequences of investment alternatives.
Resumo:
This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.