191 resultados para damage depth
Resumo:
In eukaryotes, genomic DNA is tightly compacted into a protein-DNA complex known as chromatin. This dense structure presents a barrier to DNA-dependent processes including transcription, replication and DNA repair. The repressive structure of chromatin is overcome by ATP-dependent chromatin remodelling complexes and chromatin-modifying enzymes. There is now ample evidence that DNA double-strand breaks (DSBs) elicit various histone modifications (such as acetylation, deacetylation, and phosphorylation) that function combinatorially to control the dynamic structure of the chromatin microenvironment. The role of these mechanisms during transcription and replication has been well studied, while the research into their impact on regulation of DNA damage response is rapidly gaining momentum. How chromatin structure is remodeled in response to DNA damage and how such alterations influence DSB repair are currently significant questions. This review will summarise the major chromatin modifications and chromatin remodelling complexes implicated in the DNA damage response to DSBs.
Resumo:
Load bearing Light Gauge Steel Frame (LSF) walls made of cold-formed steel studs and tracks are commonly used in residential and commercial buildings. Fire safety of these walls is essential to minimize the damage caused by fire related accidents. Past investigations on the fire performance of load bearing LSF wall systems have been limited to LSF walls made of conventional lipped channel section studs. Although structurally efficient hollow flange steel sections are available in the building industry, they are not used as LSF wall studs due to the lack of fire performance data for such walls. The hollow flange sections have torsionally rigid hollow flanges that eliminate the occurrence of local and distortional buckling to an extent, thereby increasing their structural efficiency. The weaknesses of hollow flange sections such as lower lateral distortional buckling capacity are also eliminated when they are used as studs of LSF walls as the plasterboard restraints will prevent any lateral movement. Therefore hollow flange sections can be considered as structurally more efficient studs for use in LSF wall systems. This paper reports the full scale fire tests of LSF walls made of hollow flange section studs under standard fire conditions. The frames were made of 1.6 mm thick and 150 mm deep hollow flange section studs with two closed rectangular flanges of 45 mm width x 15 mm depth. Dual plasterboards were attached on both sides of the test wall panels. The load ratio was varied and the failure times, the lateral deflections and the axial displacements of the test walls were obtained. The failure behaviour of LSF walls made of hollow flange section studs was found to be different to that of LSF walls made of conventional lipped channel section studs. The results of these fire tests show that hollow flange section studs have a higher potential in being used in load bearing LSF Walls.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
This thesis investigated the viability of using Frequency Response Functions in combination with Artificial Neural Network technique in damage assessment of building structures. The proposed approach can help overcome some of limitations associated with previously developed vibration based methods and assist in delivering more accurate and robust damage identification results. Excellent results are obtained for damage identification of the case studies proving that the proposed approach has been developed successfully.
Resumo:
BACKGROUND: Epidemiologic research has demonstrated that cutaneous markers of photo-damage are associated with risk of basal cell carcinoma (BCC). However there has been no previous attempt to calculate pooled risk estimates. METHODS: We conducted a systematic review and meta-analysis after extracting relevant studies published up to January 2013 from five electronic databases. Eligible studies were those that permitted quantitative assessment of the association between histologically-confirmed BCC and actinic keratoses, solar elastosis, solar lentigines, or telangiectasia. RESULTS: Seven eligible studies were identified and summary odds ratios (OR) were calculated using both random and quality effects models. Having more than ten actinic keratoses was most strongly associated with BCC, conferring up to a 5-fold increase in risk (OR: 4.97; 95% CI: 3.26, 7.58). Other factors, including solar elastosis, solar lentigines, and telangiectasia had weaker but positive associations with BCC with ORs around 1.5. CONCLUSIONS: Markers of chronic photo-damage are positively associated with BCC. The presence of actinic keratoses was the most strongly associated with BCC of the markers examined. IMPACT: This work highlights the relatively modest association between markers of chronic ultraviolet exposure and BCC.
Resumo:
This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.
Resumo:
Introduction: Nursing in the cardiac catheterisation laboratory (CCL) varies globally in terms of scope and deployment. In the US, all allied staff are cross-trained into all CCL roles. The Australian and New Zealand experience has legislative frameworks that reserves specific functions to nurses. Yet, the nursing role within the CCL is poorly researched and defined. Aim: This study sought to gain deeper understanding of the perceived role of CCL nurses in Australia and New Zealand. Method: A descriptive qualitative study using semi-structured in-depth interviews was used. A cross-sectional sample of 23 senior clinical nurses or nursing managers representing 16 CCLs across Australia and New Zealand was obtained. Data were digitally recorded and transcribed verbatim prior to analysis by three researchers. Results: Five major themes emerged from the data. These themes were: 1. The CCL is a unique environment; 2. CCL nursing is a unique and advanced cardiac nursing discipline; 3. The recruitment attributes for CCL nurses are advanced; 4. Education needs to be standardised; and 5. The evidence to support practice is poor. Discussion: The CCL environment is a dynamic, deeply interdisciplinary setting with CCL nursing seen to be a unique advanced practice role. Yet the time has come for a scope of practice, educational standards, guidelines and competencies was expressed by the participants. Conclusion: Nursing in the CCL is an advanced practice role working within a complex interdisciplinary environment. Further work is required to define the role of CCL nurses together with the evidence-base for their practice.
Resumo:
Damage detection using modal properties is a widely accepted method. However, quantifying such damage using modal properties is still not well established. With this in mind, a research project is presently underway towards the development of a procedure to detect, locate and quantify damage in structural components using the variations in modal properties. A novel vibration based parameter called Vibration based Damage Index is introduced into the damage assessment procedure. This paper presents the early part of the research project which treats flexural members. The proposed procedure is validated using experimental data and/or theoretical techniques and illustrated through application. Outcomes of this research highlight the ability of the proposed procedure to successfully detect, locate and quantify damage in flexural structural components using the modal properties of the first few modes.
Resumo:
Purpose: To develop, using dacarbazine as a model, reliable techniques for measuring DNA damage and repair as pharmacodynamic endpoints for patients receiving chemotherapy. Methods: A group of 39 patients with malignant melanoma were treated with dacarbazine 1 g/m2 i.v. every 21 days. Tamoxifen 20 mg daily was commenced 24 h after the first infusion and continued until 3 weeks after the last cycle of chemotherapy. DNA strand breaks formed during dacarbazine-induced DNA damage and repair were measured in individual cells by the alkaline comet assay. DNA methyl adducts were quantified by measuring urinary 3-methyladenine (3-MeA) excretion using immunoaffinity ELISA. Venous blood was taken on cycles 1 and 2 for separation of peripheral blood lymphocytes (PBLs) for measurement of DNA strand breaks. Results: Wide interpatient variation in PBL DNA strand breaks occurred following chemotherapy, with a peak at 4 h (median 26.6 h, interquartile range 14.75- 40.5 h) and incomplete repair by 24 h. Similarly, there was a range of 3-MeA excretion with peak levels 4-10 h after chemotherapy (median 33 nmol/h, interquartile range 20.448.65 nmol/h). Peak 3-MeA excretion was positively correlated with DNA strand breaks at 4 h (Spearman's correlation coefficient, r = 0.39, P = 0.036) and 24 h (r = 0.46, P = 0.01). Drug-induced emesis correlated with PBL DNA strand breaks (Mann Whitney U-test, P = 0.03) but not with peak 3-MeA excretion. Conclusions: DNA damage and repair following cytotoxic chemotherapy can be measured in vivo by the alkaline comet assay and by urinary 3-MeA excretion in patients receiving chemotherapy.
Resumo:
In particle-strengthened metallic alloys, fatigue damage incubates at inclusion particles near the surface or at the change of geometries. Micromechanical simulation of inclusions such that the fatigue damage incubation mechanisms can be categorized. As micro-plasticity gradient field around different inclusions is different, a novel concept for nonlocal evaluation of micro-plasticity intensity is introduced. The effects of void aspects ration and spatial distributions are quantified for fatigue incubation life in the high-cycle fatigue regime. At last, these effects are integrated based on the statistical facts of inclusions to predict the fatigue life of structural components.
Resumo:
Around lunchtime on 22 February 2011, the New Zealand city of Christchurch – the country’s second largest city – was hit by a magnitude 6.3 earthquake. Built on a geological faultline, like Los Angeles and Tokyo, Christchurch is no stranger to tremors; indeed, it had experienced a magnitude 7.1 quake just months before, in September 2010, and technically, this new earthquake was no more than an aftershock of the earlier tremor. That earlier quake had caused significant structural damage, but no fatalities, but the February earthquake was different: with its epicentre located no more than ten kilometres from the Christchurch city centre, at a depth of only five kilometres, it proved considerably more destructive – and it affected buildings whose structural integrity had already been severely compromised by the September quake, in the middle of a weekday when schools and city offices would have been fully occupied. While the full death toll has yet to be determined, it is estimated at close to 200.
Resumo:
Suspension bridges meet the steadily growing demand for lighter and longer bridges in today’s infrastructure systems. These bridges are designed to have long life spans, but with age, their main cables and hangers could suffer from corrosion and fatigue. There is a need for a simple and reliable procedure to detect and locate such damage, so that appropriate retrofitting can be carried out to prevent bridge failure. Damage in a structure causes changes in its properties (mass, damping and stiffness) which in turn will cause changes in its vibration characteristics (natural frequencies, modal damping and mode shapes). Methods based on modal flexibility, which depends on both the natural frequencies and mode shapes, have the potential for damage detection. They have been applied successfully to beam and plate elements, trusses and simple structures in reinforced concrete and steel. However very limited applications for damage detection in suspension bridges have been identified to date. This paper examines the potential of modal flexibility methods for damage detection and localization of a suspension bridge under different damage scenarios in the main cables and hangers using numerical simulation techniques. Validated finite element model (FEM) of a suspension bridge is used to acquire mass normalized mode shape vectors and natural frequencies at intact and damaged states. Damage scenarios will be simulated in the validated FE models by varying stiffness of the damaged structural members. The capability of damage index based on modal flexibility to detect and locate damage is evaluated. Results confirm that modal flexibility based methods have the ability to successfully identify damage in suspension bridge main cables and hangers.
Resumo:
Cable structures find many applications such as in power transmission, in anchors and especially in bridges. They serve as major load bearing elements in suspension bridges, which are capable of spanning long distances. All bridges, including suspension bridges, are designed to have long service lives. However, during this long life, they become vulnerable to damage due to changes in loadings, deterioration with age and random action such as impacts. The main cables are more vulnerable to corrosion and fatigue, compared to the other bridge components, and consequently reduces the serviceability and ultimate capacity of the bridge. Detecting and locating such damage at the earliest stage is challenging in the current structural health monitoring (SHM) systems of long span suspension bridges. Damage or deterioration of a structure alters its stiffness, mass and damping properties which in turn modify its vibration characteristics. This phenomenon can therefore be used to detect damage in a structure. The modal flexibility, which depends on the vibration characteristics of a structure, has been identified as a successful damage indicator in beam and plate elements, trusses and simple structures in reinforced concrete and steel. Successful application of the modal flexibility phenomenon to detect and locate the damage in suspension bridge main cables has received limited attention in recent research work. This paper, therefore examines the potential of the modal flexibility based Damage Index (DI) for detecting and locating damage in the main cable of a suspension bridge under four different damage scenarios. Towards this end, a numerical model of a suspension bridge cable was developed to extract the modal parameters at both damaged and undamaged states. Damage scenarios considered in this study with varied location and severity were simulated by changing stiffness at particular locations of the cable model. Results confirm that the DI has the potential to successfully detect and locate damage in suspension bridge main cables. This simple method can therefore enable bridge engineers and managers to detect and locate damage in suspension bridges at an early stage, minimize expensive retrofitting and prevent bridge collapse.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.