181 resultados para constitutive metabolites
Resumo:
Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.
An improved chemically inducible gene switch that functions in the monocotyledonous plant sugar cane
Resumo:
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.
Resumo:
As the Journal of Media Innovations comes into existence, this article reflects on the first and most obvious question: just what do we mean by “media innovations”? Drawing on the examples of a range of recent innovations in media technologies and practices, initiated by a variety of media audiences, users, professionals, and providers, it explores the interplay between the different drivers of innovation and the effects of such innovation on the complex frameworks of contemporary society and the media ecology which supports it. In doing so, this article makes a number of key observations: first, it notes that media innovation is an innovation in media practices at least as much as in media technologies, and that changes to the practices of media both reflect and promote societal changes as well – media innovations are never just media technology innovations. Second, it shows that the continuing mediatisation of society, and the shift towards a more widespread participation of ordinary users as active content creators and media innovators, make it all the more important to investigate in detail these interlinked, incremental, everyday processes of media and societal change – media innovations are almost always also user innovations. Finally, it suggests that a full understanding of these processes as they unfold across diverse interleaved media spaces and complex societal structures necessarily requires a holistic perspective on media innovations, which considers the contemporary media ecology as a crucial constitutive element of societal structures and seeks to trace the repercussions of innovations across both media and society – media innovations are inextricably interlinked with societal innovations (even if, at times, they may not be considered to be improvements to the status quo).
Resumo:
Many fungi, lichens, and bacteria produce xanthones (derivatives of 9H-xanthen-9-one, “xanthone” from the Greek “xanthos”, for “yellow”) as secondary metabolites. Xanthones are typically polysubstituted and occur as either fully aromatized, dihydro-, tetrahydro-, or, more rarely, hexahydro-derivatives. This family of compounds appeals to medicinal chemists because of their pronounced biological activity within a notably broad spectrum of disease states, a result of their interaction with a correspondingly diverse range of target biomolecules. This has led to the description of xanthones as “privileged structures”.(1) Historically, the total synthesis of the natural products has mostly been limited to fully aromatized targets. Syntheses of the more challenging partially saturated xanthones have less frequently been reported, although the development in recent times of novel and reliable methods for the construction of the (polysubstituted) unsaturated xanthone core holds promise for future endeavors. In particular, the fascinating structural and biological properties of xanthone dimers and heterodimers may excite the synthetic or natural product chemist.
Resumo:
The ability to understand and predict how thermal, hydrological,mechanical and chemical (THMC) processes interact is fundamental to many research initiatives and industrial applications. We present (1) a new Thermal– Hydrological–Mechanical–Chemical (THMC) coupling formulation, based on non-equilibrium thermodynamics; (2) show how THMC feedback is incorporated in the thermodynamic approach; (3) suggest a unifying thermodynamic framework for multi-scaling; and (4) formulate a new rationale for assessing upper and lower bounds of dissipation for THMC processes. The technique is based on deducing time and length scales suitable for separating processes using a macroscopic finite time thermodynamic approach. We show that if the time and length scales are suitably chosen, the calculation of entropic bounds can be used to describe three different types of material and process uncertainties: geometric uncertainties,stemming from the microstructure; process uncertainty, stemming from the correct derivation of the constitutive behavior; and uncertainties in time evolution, stemming from the path dependence of the time integration of the irreversible entropy production. Although the approach is specifically formulated here for THMC coupling we suggest that it has a much broader applicability. In a general sense it consists of finding the entropic bounds of the dissipation defined by the product of thermodynamic force times thermodynamic flux which in material sciences corresponds to generalized stress and generalized strain rates, respectively.
Resumo:
Mycotoxins – from the Greek μύκης (mykes, mukos) “fungus” and the Latin (toxicum) “poison” – are a large and growing family of secondary metabolites and hence natural products produced by fungi, in particular by molds (1). It is estimated that well over 1,000 mycotoxins have been isolated and characterized so far, but this number will increase over the next few decades due the availability of more specialized analytical tools and the increasing number of fungi being isolated. However, the most important classes of fungi responsible for these compounds are Alternaria, Aspergillus (multiple forms), Penicillium, and Stachybotrys. The biological activity of mycotoxins ranges from weak and/or sometimes positive effects such as antibacterial activity (e.g. penicillin derivatives derived from Penicillium strains) to strong mutagenic (e.g. aflatoxins, patulin), carcinogenic (e.g. aflatoxins), teratogenic, neurotoxic (e.g. ochratoxins), nephrotoxic (e.g. fumonisins, citrinin), hepatotoxic, and immunotoxic (e.g. ochratoxins, diketopiperazines) activities (1, 2), which are discussed in detail in this volume.
Resumo:
While applications of amine oxidases are increasing, few have been characterised and our understanding of their biological role and strategies for bacteria exploitation are limited. By altering the nitrogen source (NH4Cl, putrescine and cadaverine (diamines) and butylamine (monoamine)) and concentration, we have identified a constitutive flavin dependent oxidase (EC 1.4.3.10) within Rhodococcus opacus. The activity of this oxidase can be increased by over two orders of magnitude in the presence of aliphatic diamines. In addition, the expression of a copper dependent diamine oxidase (EC 1.4.3.22) was observed at diamine concentrations>1mM or when cells were grown with butylamine, which acts to inhibit the flavin oxidase. A Michaelis-Menten kinetic treatment of the flavin oxidase delivered a Michaelis constant (KM)=190μM and maximum rate (kcat)=21.8s(-1) for the oxidative deamination of putrescine with a lower KM (=60μM) and comparable kcat (=18.2s(-1)) for the copper oxidase. MALDI-TOF and genomic analyses have indicated a metabolic clustering of functionally related genes. From a consideration of amine oxidase specificity and sequence homology, we propose a putrescine degradation pathway within Rhodococcus that utilises oxidases in tandem with subsequent dehydrogenase and transaminase enzymes. The implications of PUT homeostasis through the action of the two oxidases are discussed with respect to stressors, evolution and application in microbe-assisted phytoremediation or bio-augmentation.
Resumo:
Apples are rich in polyphenols, which provide antioxidant properties, mediation of cellular processes such as inflammation, and modulation of gut microbiota. In this study we compared genetically engineered apples with increased flavonoids [myeloblastis transcription factor 10 (MYB10)] with nontransformed apples from the same genotype, "Royal Gala" (RG), and a control diet with no apple. Compared with the RG diet, the MYB10 diet contained elevated concentrations of the flavonoid subclasses anthocyanins, flavanol monomers (epicatechin) and oligomers (procyanidin B2), and flavonols (quercetin glycosides), but other plant secondary metabolites were largely unaltered. We used these apples to investigate the effects of dietary flavonoids on inflammation and gut microbiota in 2 mouse feeding trials. In trial 1, male mice were fed a control diet or diets supplemented with 20% MYB10 apple flesh and peel (MYB-FP) or RG apple flesh and peel (RG-FP) for 7 d. In trial 2, male mice were fed MYB-FP or RG-FP diets or diets supplemented with 20% MYB10 apple flesh or RG apple flesh for 7 or 21 d. In trial 1, the transcription levels of inflammation-linked genes in mice showed decreases of >2-fold for interleukin-2 receptor (Il2rb), chemokine receptor 2 (Ccr2), chemokine ligand 10 (Cxcl10), and chemokine receptor 10 (Ccr10) at 7 d for the MYB-FP diet compared with the RG-FP diet (P <0.05). In trial 2, the inflammation marker prostaglandin E2 (PGE2) in the plasma of mice fed the MYB-FP diet at 21 d was reduced by 10-fold (P < 0.01) compared with the RG-FP diet. In colonic microbiota, the number of total bacteria for mice fed the MYB-FP diet was 6% higher than for mice fed the control diet at 21 d (P = 0.01). In summary, high-flavonoid apple was associated with decreases in some inflammation markers and changes in gut microbiota when fed to healthy mice.
Resumo:
Consumers of whole foods, such as fruits, demand consistent high quality and seek varieties with enhanced health properties, convenience or novel taste. We have raised the polyphenolic content of apple by genetic engineering of the anthocyanin pathway using the apple transcription factor MYB10. These apples have very high concentrations of foliar, flower and fruit anthocyanins, especially in the fruit peel. Independent lines were examined for impacts on tree growth, photosynthesis and fruit characteristics. Fruit were analysed for changes in metabolite and transcript levels. Fruit were also used in taste trials to study the consumer perception of such a novel apple. No negative taste attributes were associated with the elevated anthocyanins. Modification with this one gene provides near isogenic material and allows us to examine the effects on an established cultivar, with a view to enhancing consumer appeal independently of other fruit qualities. © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Resumo:
Seven new bisresorcinol derivatives, together with four known resorcinols. have been isolated from the ethyl acetate extract of the sterns of Grevillea floribunda. Five of the new compounds (floribol A-E) were characterized as bisnorstriatol derivatives Substituted at C-2 of both resorcinol units with variously modified prenyl (3-methylbut-2-enyl) units. The remaining two new compounds are similarly Substituted derivatived of grebustol-B. (c) 2008 Phytochemical Society of Europe Published by Elsevier B.V. All rights reserved.
Resumo:
Based on the characterization by Atomic Force Microscopy (AFM), we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young’s moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton (CSK) and the intracellular fluid when the fixed chondrocytes is mainly governed by their intracellular fluid which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic (PHE) constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.
Resumo:
In vitro analyses of basement membrane invasiveness employing Matrigel (a murine tumor extract rich in basement membrane components) have been performed on human breast cancer model systems. Constitutive invasiveness of different human breast cancer (HBC) cell lines has been examined as well as regulation by steroid hormones, growth factors, and oncogenes. Carcinoma cells exhibiting a mesenchymal-like phenotype (vimentin expression, lack of cell border associated uvomorulin) show dramatically increased motility, invasiveness, and metastatic potential in nude mice. These findings support the hypothesis that epithelial to mesenchymal transition (EMT)-like events may be instrumental in the metastatic progression of human breast cancer. The MCF-7 subline MCF-7ADR appears to have undergone such a transition. The importance of such a transition may be reflected in the emergence of vimentin expression as an indicator of poor prognosis in HBC. Matrix degradation and laminin recognition are highlighted as potential targets for antimetastatic therapy, and analyses of laminin attachment and the matrix metalloproteinase (MMP) family in HBC cell lines are summarized. Matrigel-based assays have proved useful in the study of the molecular mechanisms of basement membrane invasiveness, their regulation in HBC cells, and their potential as targets for antimetastatic therapy.
Resumo:
This review will focus on the role of sphingosine and its phosphorylated derivative sphingosine-1-phosphate (SPP) in cell growth regulation and signal transduction. We will show that many of the effects attributed to sphingosine in quiescent Swiss 3T3 fibroblasts are mediated via its conversion to SPP. We propose that SPP has appropriate properties to function as an intracellular second messenger based on the following: it elicits diverse cellular responses; it is rapidly produced from sphingosine by a specific kinase and rapidly degraded by a specific lyase; its concentration is low in quiescent cells but increases rapidly and transiently in response to the growth factors, fetal calf serum (FCS) and platelet derived growth factor (PDGF); it releases Ca2+ from internal sources in an InsP3-independent manner; and finally, it may link sphingolipid signaling pathways to cellular ras-mediated signaling pathways by elevating phosphatidic acid levels. The effects of this novel second messenger on growth, differentiation and invasion of human breast cancer cells will be discussed. © 1994 Kluwer Academic Publishers.
Resumo:
The growth of a single cylindrical hole ahead of a blunt crack tip was studied using large deformation finite element analysis in three-point bend specimens with different precrack depth. The effect of small second phase particles was taken into account by incorporating Gurson’s constitutive equation. The effects of strain hardening and the initial distance from the hole to the crack tip were also investigated. The results show that the variation of crack tip opening displacement with load is not sensitive to constraint level. The effects of constraint on the growth of hole and ductile initiation toughness are diminished with decreasing initial distance from the hole to the blunt crack tip.
Resumo:
Matrix Metalloproteinase-2 (MMP-2) is secreted as a zymogen, the activation of which has been associated with metastatic progression in human breast cancer (HBC). Concanavalin A (Con A) has been found to induce activation of MMP-2 in invasive HBC cell lines. Con A effects on the expression of mRNA for membrane-type matrix metalloproteinase (MT-MMP), a newly described cell surface-associated MMP, showed a close temporal correlation with induction of MMP-2 activation. It is surprising that MT-MMP mRNA is constitutively present in the uninduced MDA-MB-231 cell, despite a lack of MMP-2 activation. We have used actinomycin D to demonstrate a partial requirement for de novo gene expression in the induction of MMP-2 activation by Con A in MDA-MB-231 HBC cells. Furthermore, this transcriptional response to Con A appeared to require the continued presence of Con A for its manifestation. The nontranscriptional component of the Con A induction manifests rapidly, is quite substantial, and persists strongly despite actinomycin D abrogation of both constitutive and Con A-induced MT-MMP. Cycloheximide analyses suggest that protein synthesis may be involved in this rapid transcription-independent response. These studies suggest that Con A induces MMP-2-activation in part by up-regulation of MT-MMP expression but has a more complicated mode of action, involving additional nontranscriptional effects, which apparently require protein synthesis.