184 resultados para color stability
Resumo:
Transport related injury is a leading cause of death and disability for adolescents and represents a substantial burden on public health and the community as a whole. Adolescents appear to have a growing risk of harm due to the co-existence of increasing alcohol use and engagement in risky transport behaviours. Understanding more about the development and stability of these behaviours by young adolescents over time could be beneficial in targeting transport injury prevention interventions for high-risk adolescents. In Australia alcohol use begins to increase significantly through the early and middle adolescent years even though the majority of these young people are still in school. Aim This paper reports on changes over a six month period in alcohol use, anger management experiences and transport risk taking behaviours including riding a bicycle without a helmet and under-age driving for high-risk adolescents and non high-risk early adolescents. Year 9 students (N=1,005) from 20 schools in Queensland, Australia completed a baseline survey in the first half of 2012 and at a six month follow up. Respondents at both times were asked about their engagement in risk taking behaviours measured by Mak’s adolescent delinquency scale, which included five transport related items. They were also asked to rate their alcohol use for the preceding three month period. The stability of these risk taking indicators was measured by comparing baseline results with the six month follow up. Results High-risk adolescents were more likely to report change in their alcohol use and transport behaviours when compared with non high-risk adolescents over a six month period. There were no significant changes in control of anger for either group. Demographic characteristics were not shown to have any significant effect on the stability of risk indicators for high-risk adolescents and non high-risk adolescents. Differences were found in the stability of risk taking indicators for high-risk adolescents and non high-risk adolescents. The findings of this paper have implications in targeting transport risk behaviour change interventions to meet the needs of high-risk adolescents.
Resumo:
A new bioluminescent creatine kinase (CK) assay using purified luciferase was used to analyse CK activity in serum samples dried on filter paper. Enzyme activity was preserved for over 1 wk on paper stored at room temperature. At 60°C, CK activity in liquid serum samples was rapidly inactivated, but the activity of enzyme stored on paper was preserved for at least 2 days.
Resumo:
This paper proposes a new controller for the excitation system to improve rotor angle stability. The proposed controller uses energy function to predict desired flux for the generator to achieve improved first swing stability and enhanced system damping. The controller is designed through predicting the desired value of flux for the future step of the system and then obtaining appropriate supplementary control input for the excitation system. The simulations are performed on Single-Machine-Infinite-Bus system and the results verify the efficiency of the controller. The proposed method facilitates the excitation system with a feasible and reliable controller for severe disturbances.
Resumo:
Filopodial protrusion initiates cell migration, which decides the fate of cells in biological environments. In order to understand the structural stability of ultra-slender filopodial protrusion, we have developed an explicit modeling strategy that can study both static and dynamic characteristics of microfilament bundles. Our study reveals that the stability of filopodial protrusions is dependent on the density of F-actin crosslinkers. This cross-linkage strategy is a requirement for the optimization of cell structures, resulting in the provision and maintenance of adequate bending stiffness and buckling resistance while mediating the vibration. This cross-linkage strategy explains the mechanical stability of filopodial protrusion and helps understand the mechanisms of mechanically induced cellular activities.
Resumo:
Objective This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. Methods Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. Results There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force thanthe hemispherical cup in the high-density bone analogue (p = 0.006). Conclusions Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock.
Resumo:
The common goal of tissue engineering is to develop substitutes that can closely mimic the structure of extracellular matrix (ECM). However, similarly important is the intensive material properties which have often been overlooked, in particular, for soft tissues that are not to bear load assumingly. The mechanostructural properties determine not only the structural stability of biomaterials but also their physiological functionality by directing cellular activity and regulating cell fate decision. The aim here is to emphasize that cells could sense intensive material properties like elasticity and reside, proliferate, migrate and differentiate accordinglyno matter if the construct is from a natural source like cartilage, skin etc. or of synthetic one. Meanwhile, the very objective of this work is to provide a tunable scheme for manipulating the elasticity of collagen-based constructs to be used to demonstrate how to engineer cell behavior and regulate mechanotransduction. Articular cartilage was chosen as it represents one of the most complex hierarchical arrangements of collagen meshwork in both connective tissues and ECM-like biomaterials. Corona discharge treatment was used to produce constructs with varying density of crosslinked collagen and stiffness accordingly. The results demonstrated that elastic modulus increased up to 33% for samples treated up to one minute as crosslink density was found to increase with exposure time. According to the thermal analysis, longer exposure to corona increased crosslink density as the denaturation enthalpy increased. However the spectroscopy results suggested that despite the stabilization of the collagen structure the integrity of the triple helical structure remained intact. The in vitro superficial culture of heterologous chondrocytes also determined that the corona treatment can modulate migration with increased focal adhesion of cells due to enhanced stiffness, without cytotoxicity effects, and providing the basis for reinforcing three-dimensional collagen-based biomaterials in order to direct cell function and mediate mechanotransduction.
Resumo:
The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system. It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned. This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects. The concepts of different types of wind turbine generators (WTGs) and the principles of the grid-connected structures of wind power generation systems are first briefly introduced. Then, the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified. Finally, the control strategies on WTGs to enhance power system damping characteristics are presented.
Resumo:
With the ever-increasing penetration level of wind power, the impacts of wind power on the power system are becoming more and more significant. Hence, it is necessary to systematically examine its impacts on the small signal stability and transient stability in order to find out countermeasures. As such, a comprehensive study is carried out to compare the dynamic performances of power system respectively with three widely-used power generators. First, the dynamic models are described for three types of wind power generators, i. e. the squirrel cage induction generator (SCIG), doubly fed induction generator (DFIG) and permanent magnet generator (PMG). Then, the impacts of these wind power generators on the small signal stability and transient stability are compared with that of a substituted synchronous generator (SG) in the WSCC three-machine nine-bus system by the eigenvalue analysis and dynamic time-domain simulations. Simulation results show that the impacts of different wind power generators are different under small and large disturbances.
Resumo:
In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.
Resumo:
This book is one in a series of seven atlases covering the ophthalmic sub-specialties: cornea, retina, glaucoma, oculoplastics, neuro-ophthalmology, uveitis and paediatrics. The author of Cornea and editor of the series is Christopher Rapuano, Attending Surgeon and Director of the Cornea Service at Wills Eye Hospital in Philadelphia, Pennsylvania, USA. In the introduction to the book, Rapuano states ‘The goal of this series is to provide an up-to-date clinical overview of the major areas of ophthalmology for students, residents and practitioners in all the healthcare professions’...
Resumo:
Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies. © 2013 Glenn Jenkins et al.
Resumo:
Purpose To investigate the differences between and variations across time in corneal topography and ocular wavefront aberrations in young Singaporean myopes and emmetropes. Methods We used a videokeratoscope and wavefront sensor to measure the ocular surface topography and wavefront aberrations of the total eye optics in the morning, mid-day and late afternoon on two separate days. Topography data were used to derive the corneal surface wavefront aberrations. Both the corneal and total wavefronts were analysed up to the 4th radial order of the Zernike polynomial expansion, and were centred on the entrance pupil (5 mm). The participants included 12 young progressing myopes, 13 young stable myopes and 15 young age-matched emmetropes. Results For all subjects considered together there were significant changes in some of the aberrations terms across the day, such as spherical aberration ( ) and vertical coma ( ) (repeated measures ANOVA, p<0.05). The magnitude of positive spherical aberration ( ) was significantly lower in the progressing myope group than that of the stable myopes (p=0.04) and emmetrope group (p=0.02). There were also significant interactions between refractive group and time of day for with/against-the-rule astigmatism ( ). Significantly lower 4th order RMS of ocular wavefront aberrations were found in the progressing myope group compared with the stable myopes and emmetropes (p<0.01). Conclusions These differences and variations in the corneal and total aberrations may have significance for our understanding of refractive error development and for clinical applications requiring accurate wavefront measurements.
Resumo:
It has become more and more demanding to investigate the impacts of wind farms on power system operation as ever-increasing penetration levels of wind power have the potential to bring about a series of dynamic stability problems for power systems. This paper undertakes such an investigation through investigating the small signal and transient stabilities of power systems that are separately integrated with three types of wind turbine generators (WTGs), namely the squirrel cage induction generator (SCIG), the doubly fed induction generator (DFIG), and the permanent magnet generator (PMG). To examine the effects of these WTGs on a power system with regard to its stability under different operating conditions, a selected synchronous generator (SG) of the well-known Western Electricity Coordinating Council (WECC three-unit nine-bus system and an eight-unit 24-bus system is replaced in turn by each type of WTG with the same capacity. The performances of the power system in response to the disturbances are then systematically compared. Specifically, the following comparisons are undertaken: (1) performances of the power system before and after the integration of the WTGs; and (2) performances of the power system and the associated consequences when the SCIG, DFIG, or PMG are separately connected to the system. These stability case studies utilize both eigenvalue analysis and dynamic time-domain simulation methods.
Resumo:
This paper presents a study done into the effectiveness of using local acceleration measurements vs. remote angle measurements in providing stabilising control via SVCs following large disturbances. The system studied was an analogue of the Queensland-New South Wales Interconnection (QNI) and involved the control of an existing Static Var Compensators (SVC) at Sydney West. This study is placed in the context of wide area controls for large systems using aggregated models for groups of machines.
Resumo:
In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature.