174 resultados para cloud point


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Loop detectors are the oldest and widely used traffic data source. On urban arterials, they are mainly installed for signal control. Recently state of the art Bluetooth MAC Scanners (BMS) has significantly captured the interest of stakeholders for exploiting it for area wide traffic monitoring. Loop detectors provide flow- a fundamental traffic parameter; whereas BMS provides individual vehicle travel time between BMS stations. Hence, these two data sources complement each other, and if integrated should increase the accuracy and reliability of the traffic state estimation. This paper proposed a model that integrates loops and BMS data for seamless travel time and density estimation for urban signalised network. The proposed model is validated using both real and simulated data and the results indicate that the accuracy of the proposed model is over 90%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of cloud computing services is appealing to the small and medium enterprises (SMEs), with the opportunity to acquire modern information technology resources as a utility and avoid costly capital investments in technology resources. However, the adoption of the cloud computing services presents significant challenges to the SMEs. The SMEs need to determine a path to adopting the cloud computing services that would ensure their sustainable presence in the cloud computing environment. Information about approaches to adopting the cloud computing services by the SMEs is fragmented. Through an interpretive design, we suggest that the SMEs need to have a strategic and incremental intent, understand their organizational structure, understand the external factors, consider the human resource capacity, and understand the value expectations from the cloud computing services to forge a successful path to adopting the cloud computing services. These factors would contribute to a model of cloud services for SMEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the fact that customer retention is crucial for providers of cloud enterprise systems, only little attention has been directed towards investigating the antecedents of subscription renewal in an organizational context. This is even more surprising, as cloud services are usually offered as subscription-based pricing models with the (theoretical) possibility of immediate service cancellation, strongly opposing classical long-term IT-Outsourcing contracts or license-based payment plans of on premise enterprise systems. To close this research gap an empirical study was undertaken. Firstly, a conceptual model was drawn from theories of social psychology, organizational system continuance and IS success. The model was subsequently tested using survey responses of senior management within companies which adopted cloud enterprise systems. Gathered data was then analysed using PLS. The results indicate that subscription renewal intention is influenced by both – social-related and technology-specific factors – which are able to explain 50.4% of the variance in the dependent variable. Beneath the cloud enterprise systems specific contributions, the work advances knowledge in the area of organizational system continuance, as well as IS success.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of cloud computing to provide almost unlimited storage, backup and recovery, and quick deployment contributes to its widespread attention and implementation. Cloud computing has also become an attractive choice for mobile users as well. Due to limited features of mobile devices such as power scarcity and inability to cater computationintensive tasks, selected computation needs to be outsourced to the resourceful cloud servers. However, there are many challenges which need to be addressed in computation offloading for mobile cloud computing such as communication cost, connectivity maintenance and incurred latency. This paper presents taxonomy of the computation offloading approaches which aim to address the challenges. The taxonomy provides guidelines to identify research scopes in computation offloading for mobile cloud computing. We also outline directions and anticipated trends for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the performances of prediction intervals generated from alternative time series models, in the context of tourism forecasting. The forecasting methods considered include the autoregressive (AR) model, the AR model using the bias-corrected bootstrap, seasonal ARIMA models, innovations state space models for exponential smoothing, and Harvey’s structural time series models. We use thirteen monthly time series for the number of tourist arrivals to Hong Kong and Australia. The mean coverage rates and widths of the alternative prediction intervals are evaluated in an empirical setting. It is found that all models produce satisfactory prediction intervals, except for the autoregressive model. In particular, those based on the biascorrected bootstrap perform best in general, providing tight intervals with accurate coverage rates, especially when the forecast horizon is long.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research suggests information technology (IT) governance structures to manage the cloud computing services. The interest in acquiring IT resources as a utility from the cloud computing environment is gaining momentum. The cloud computing services present organizations with opportunities to manage their IT expenditure on an ongoing basis, and access to modern IT resources to innovate and manage their continuity. However, the cloud computing services are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to manage the cloud computing services. The subsequent decisions from these governance structures will ensure the effective management of the cloud computing services. This management will facilitate a better fit of the cloud computing services into organizations’ existing processes to achieve the business (process-level) and the financial (firm-level) objectives. Using a triangulation approach, we suggest four governance structures for managing the cloud computing services. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. We also propose that these governance structures would relate directly to organizations cloud computing services-related business objectives, and indirectly to cloud computing services-related financial objectives. Perceptive field survey data from actual and prospective cloud computing service adopters suggest that the suggested governance structures would contribute directly to cloud computing-related business objectives and indirectly to cloud computing-related financial objectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports on the utilisation of the Manchester Driver Behaviour Questionnaire (DBQ) to examine the self-reported driving behaviours of a large sample of Australian fleet drivers (N = 3414). Surveys were completed by employees before they commenced a one day safety workshop intervention. Factor analysis techniques identified a three factor solution similar to previous research, which was comprised of: (a) errors, (b) highway-code violations and (c) aggressive driving violations. Two items traditionally related with highway-code violations were found to be associated with aggressive driving behaviours among the current sample. Multivariate analyses revealed that exposure to the road, errors and self-reported offences predicted crashes at work in the last 12 months, while gender, highway violations and crashes predicted offences incurred while at work. Importantly, those who received more fines at work were at an increased risk of crashing the work vehicle. However, overall, the DBQ demonstrated limited efficacy at predicting these two outcomes. This paper outlines the major findings of the study in regards to identifying and predicting aberrant driving behaviours and also highlights implications regarding the future utilisation of the DBQ within fleet settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Realistic plant models are important for leaf area and plant volume estimation, reconstruction of growth canopies, structure generation of the plant, reconstruction of leaf surfaces and agrichemical spray droplet modelling. This article investigates several different scanning devices for obtaining a three dimensional digitisation of plant leaves with a point cloud resolution of 200-500μm. The devices tested were a Roland mdx-20, Microsoft Kinect, Roland lpx-250, Picoscan and Artec S. The applicability of each of these devices for scanning plant leaves is discussed. The most suitable tested digitisation device for scanning plant leaves is the Artec S scanner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate whether framing effects of voluntary contributions are significant in a provision point mechanism. Our results show that framing significantly affects individuals of the same type: cooperative individuals appear to be more cooperative in the public bads game than in the public goods game, whereas individualistic subjects appear to be less cooperative in the public bads game than in the public goods game. At the aggregate level of pooling all individuals, the data suggests that framing effects are negligible, which is in contrast with the established result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a formative measurement index to assess cloud enterprise systems success. The scale development procedure is based on Moore and Benbasat (1991), including newer scale development elements which focus on the creation and assessment of formative constructs. The data is analysed using SmartPLS with a sample of 103 IT decision makers. The results show that the perception of net benefits is shaped not only by enterprise-system-specific factors like productivity improvements and higher quality of business processes, but also by factors which are specifically attributed to cloud systems, such as higher strategic flexibility. Reliability, user requirements and customization contribute most to the overall perception of system quality. Information quality shows no cloud-specific facets and is robust in the context of cloud enterprise systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data are now prevalent in a wide range of fields including environmental and health science. This has led to the development of a range of approaches for analysing patterns in these data. In this paper, we compare several Bayesian hierarchical models for analysing point-based data based on the discretization of the study region, resulting in grid-based spatial data. The approaches considered include two parametric models and a semiparametric model. We highlight the methodology and computation for each approach. Two simulation studies are undertaken to compare the performance of these models for various structures of simulated point-based data which resemble environmental data. A case study of a real dataset is also conducted to demonstrate a practical application of the modelling approaches. Goodness-of-fit statistics are computed to compare estimates of the intensity functions. The deviance information criterion is also considered as an alternative model evaluation criterion. The results suggest that the adaptive Gaussian Markov random field model performs well for highly sparse point-based data where there are large variations or clustering across the space; whereas the discretized log Gaussian Cox process produces good fit in dense and clustered point-based data. One should generally consider the nature and structure of the point-based data in order to choose the appropriate method in modelling a discretized spatial point-based data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is about localising across extreme lighting and weather conditions. We depart from the traditional point-feature-based approach as matching under dramatic appearance changes is a brittle and hard thing. Point feature detectors are fixed and rigid procedures which pass over an image examining small, low-level structure such as corners or blobs. They apply the same criteria applied all images of all places. This paper takes a contrary view and asks what is possible if instead we learn a bespoke detector for every place. Our localisation task then turns into curating a large bank of spatially indexed detectors and we show that this yields vastly superior performance in terms of robustness in exchange for a reduced but tolerable metric precision. We present an unsupervised system that produces broad-region detectors for distinctive visual elements, called scene signatures, which can be associated across almost all appearance changes. We show, using 21km of data collected over a period of 3 months, that our system is capable of producing metric localisation estimates from night-to-day or summer-to-winter conditions.