123 resultados para channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipped channel beams (LCBs) are commonly used as floor joists and bearers in buildings. However, they are subjected to specific failure modes such as web crippling. Despite considerable web crippling research, recent studies [1-6] have shown that the current web crippling design rules are unable to predict the test capacities under ETF and ITF load cases. In many instances, the predictions by the available design standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 [7-9] are inconsistent. Hence thirty-six tests were conducted to assess the web crippling behaviour and strengths of LCBs under two flange load cases. Experimental web crippling capacities were then compared with the predictions from the current design rules. These comparisons showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LCB sections under ETF load case and are conservative for ITF load case. Hence improved equations were proposed to determine the web crippling capacities of LCBs. Suitable design rules were also developed using the direct strength method. This paper presents the details of this study and the results including improved design rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim is to examine evidence-based strategies to motivate appropriate action and increase informed decision-making during the response and recovery phases of disasters. We combine expertise in communication, consumer psychology and marketing, disaster and emergency management, and law. This poster presents findings from a social media work package, and preliminary findings from the focus group work package on emergency warning message comprehension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic speech recognition from multiple distant micro- phones poses significant challenges because of noise and reverberations. The quality of speech acquisition may vary between microphones because of movements of speakers and channel distortions. This paper proposes a channel selection approach for selecting reliable channels based on selection criterion operating in the short-term modulation spectrum domain. The proposed approach quantifies the relative strength of speech from each microphone and speech obtained from beamforming modulations. The new technique is compared experimentally in the real reverb conditions in terms of perceptual evaluation of speech quality (PESQ) measures and word error rate (WER). Overall improvement in recognition rate is observed using delay-sum and superdirective beamformers compared to the case when the channel is selected randomly using circular microphone arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire safety plays a vital role in building design because appropriate level of fire safety is important to safeguard lives and property. Cold-formed steel channel sections along with fire-resistive plasterboards are used to construct light-gauge steel frame (LSF) floor systems to provide adequate fire resistance ratings (FRR). It is common practice to use lipped channel sections (LCS) as joists in LSF floor systems, and past research has only considered such systems. This research focuses on adopting improved joist sections such as hollow flange channel (HFC) sections to improve the structural performance and FRR of cold-formed LSF floor systems under standard fire conditions. The structural and thermal performances of LSF floor systems made of a welded HFC, LiteSteel Beams (LSB), with different plasterboard and insulation configurations, were investigated using four full-scale fire tests under standard fires. These fire tests showed that the new LSF floor system with LSB joists improved the FRR in comparison to that of conventional LCS joists. Fire tests have provided valuable structural and thermal performance data of tested floor systems that included time-temperature profiles and failure times, temperatures, and modes. This paper presents the details of the fire tests conducted in this study and their results along with some important findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the results of the time dispersion parameters obtained from a set of channel measurements conducted in various environments that are typical of multiuser Infostation application scenarios are presented. The measurement procedure takes into account the practical scenarios typical of the positions and movements of the users in the particular Infostation network. To provide one with the knowledge of how much data can be downloaded by users over a given time and mobile speed, data transfer analysis for multiband orthogonal frequency division multiplexing (MB-OFDM) is presented. As expected, the rough estimate of simultaneous data transfer in a multiuser Infostation scenario indicates dependency of the percentage of download on the data size, number and speed of the users, and the elapse time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fire performance of cold-formed steel members is an important criterion to be verified for their successful use in structural applications. However, lack of clear design guidance on their fire performance has inhibited their usage in buildings. Their elevated temperature mechanical properties, i.e., yield strengths, elastic moduli and stress–strain relationships, are imperative for the fire design. In the past many researchers have proposed elevated temperature mechanical property reduction factors for cold-formed steels, however, large variations exist among them. The LiteSteel Beam (LSB), a hollow flange channel section, is manufactured by a combined cold-forming and electric resistance welding process. Its web, inner and outer flange elements have different yield strengths due to varying levels of cold-working caused by their manufacturing process. Elevated temperature mechanical properties of LSBs are not the same even within their cross-sections. Therefore an experimental study was undertaken to determine the elevated temperature mechanical properties of steel plate elements in LSBs. Elevated temperature tensile tests were performed on web, inner and outer flange specimens taken from LSBs, and their results are presented in this paper including their comparisons with previous studies. Based on the test results and the proposed values from previous studies and fire design standards, suitable predictive equations are proposed for the determination of elevated temperature mechanical properties of LSB web and flange elements. Suitable stress–strain models are also proposed for the plate elements of this cold-formed and welded hollow flange channel section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secure communication channels are typically constructed from an authenticated key exchange (AKE) protocol, which authenticates the communicating parties and establishes shared secret keys, and a secure data transmission layer, which uses the secret keys to encrypt data. We address the partial leakage of communicating parties' long-term secret keys due to various side-channel attacks, and the partial leakage of plaintext due to data compression. Both issues can negatively affect the security of channel establishment and data transmission. In this work, we advance the modelling of security for AKE protocols by considering more granular partial leakage of parties' long-term secrets. We present generic and concrete constructions of two-pass leakage-resilient key exchange protocols that are secure in the proposed security models. We also examine two techniques--heuristic separation of secrets and fixed-dictionary compression--for enabling compression while protecting high-value secrets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a development of a methodology to predict the radio transmitter signal attenuation, via vertical density profiling of digitised objects, through the use of Light Detection and Ranging (LiDaR) measurements. The resulting map of indexed signal attenuation is useful for dynamic radio transmitter placement within the geospatial data set without expensive and tedious radio measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The emergence of new technologies has revolutionized the way companies interact and build relationships with customers. The channel–customer relationship has traditionally been managed via a push approach in communication (“What can we sell customers?”) with the hope of cultivating customer loyalty. However, emotional understandings of customers and how they feel about a product, service, or business can drastically alter consumers’ engagement, behavior, and purchasing preferences. This rapidly evolving landscape has left managers at a loss, and what they are experiencing is likely the beginning of a tectonic shift in the way digital channels are designed, monitored, and managed. In this article, digital channel relationships are examined, and useful concepts for clarifying and refining the emotional meaning behind company strategy and their relationship to corresponding digital channels are detailed. Using three case study examples, we discuss the process and impact of such emotionally aware digital channel designs. Recommendations are made regarding how companies can select, design, and maintain digital engagements based on their strategy and industry needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipped channel beams (LCBs) are commonly used as flexural members such as floor joists and bearers in the construction 6 industry. These thin-walled LCBs are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable 7 research in this area, some recent studies have shown that the current web crippling design rules are unable to predict the test capacities under 8 end-two-flange (ETF) and interior-two-flange (ITF) load conditions. In many instances, web crippling predictions by the available design 9 standards such as AISI S100, AS/NZS 4600 and Eurocode 3 Part 1-3 are inconsistent, i.e., unconservative in some cases, although they 10 are conservative in other cases. Hence, experimental studies consisting of 36 tests were conducted in this research to assess the web crippling 11 behavior and capacities of high-strength LCBs under two-flange load cases (ETF and ITF). Experimental results were then compared with the 12 predictions from current design rules. Comparison of the ultimate web crippling capacities from tests showed that the design equations are 13 very unconservative for LCB sections under the ETF load case and are conservative for the ITF load case. Hence, improved equations were 14 proposed to determine the web crippling capacities of LCBs based on the experimental results from this study. Current design equations do 15 not provide the direct strength method (DSM) provisions for web crippling. Hence, suitable design rules were also developed under the DSM 16 format using the test results and buckling analyses using finite-element analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin-walled steel hollow flange channel beams known as LiteSteel beam (LSB) sections were developed for use as joists and bearers in various flooring systems. However, they are subjected to specific buckling and failure modes, one of them being web crippling. Despite considerable research in this area, much of the current design predictions for cold-formed steel sections are not directly applicable to LSBs. This is due to the geometry of the LSB, which consists of two closed rectangular hollow flanges, and its unique residual stress characteristics and initial geometric imperfections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs with their flanges fastened to supports. Thirty nine web crippling tests were conducted under two flange load cases (End Two Flange (ETF) and Interior Two Flange (ITF)). Test results showed that for ETF load case the web crippling capacities increased by 50% on average while they increased by 97% for ITF load case when flanges were fastened to supports. Comparison of the ultimate web crippling capacities from tests showed that AS/NZS 4600 and AISI S100 web crippling design equations are conservative for LSB sections with flanges fastened to supports under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs with flanges fastened to supports. This paper presents the details of the experimental study into the web crippling behaviour of LSB sections with their flanges fastened under ETF and ITF load cases, and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange channel beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This process enables the end users to choose an effective combination of different web and flange plate sizes to achieve optimum design capacities. Recent research studies focused mainly on the shear behaviour of the most commonly used lipped channel beam and welded hollow flange beam sections. However, the shear behaviour of rivet fastened RHFCB has not been investigated. Therefore a detailed experimental study involving 24 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental shear capacities with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Such enhancements to the shear behaviour and capacity were achieved with a rivet spacing of 100 mm. Improved design rules were proposed for rivet fastened RHFCBs based on the current shear design equations in AISI S100 and the direct strength method. This paper presents the details of this experimental investigation and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore experimental and numerical studies were undertaken to investigate the shear behaviour and strength of rivet fastened RHFCBs. In this research finite element models of rivet fastened RHFCBs were developed to investigate their nonlinear shear behaviour including their buckling characteristics and ultimate shear strength. This paper presents the details of the finite element models of rivet fastened RHFCBs and the results. Both finite element analysis and experimental results showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format.