356 resultados para bending


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral tsumebite Pb2Cu(PO4)(SO4)(OH), a copper phosphate-sulfate hydroxide of the brackebuschite group has been characterised by Raman and infrared spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A2B(XO4)(OH,H2O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu2+,Fe2+, Fe3+, Mn2+, Mn3+, Zn and XO4 may be AsO4, PO4, SO4,VO4. Bands are assigned to the stretching and bending modes of PO43- and HOPO3 units. Hydrogen bond distances are calculated based upon the position of the OH stretching vibrations and range from 2.759 Å to 3.205 Å. This range of hydrogen bonding contributes to the stability of the mineral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Newberyite Mg(PO3OH)•3H2O is a mineral found in caves such as from Moorba cave, Jurien Bay, Western Australia, the Skipton Lava tubes (SW of Ballarat, Victoria, Australia) and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain oxyanions, hydroxyl units and water, the minerals lend themselves to spectroscopic analysis. Raman spectroscopy can investigate the complex paragenetic relationships existing between a number of ‘cave’ minerals. The intense sharp band at 982 cm-1 is assigned to the PO43- ν1 symmetric stretching mode. Low intensity Raman bands at 1152, 1263 and 1277 cm-1 are assigned to the PO43- ν3 antisymmetric stretching vibrations. Raman bands at 497 and 552 cm-1 are attributed to the PO43- ν4 bending modes. An intense Raman band for newberyite at 398 cm-1 with a shoulder band at 413 cm-1 is assigned to the PO43- ν2 bending modes. The values for the OH stretching vibrations provide hydrogen bond distances of 2.728Å (3267 cm-1), 2.781Å (3374cm-1), 2.868Å (3479 cm-1), and 2.918Å (3515 cm-1). Such hydrogen bond distances are typical of secondary minerals. Estimates of the hydrogen-bond distances have been made from the position of the OH stretching vibrations and show a wide range in both strong and weak bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral sanjuanite Al2(PO4)(SO4)(OH)•9H2O has been characterised by Raman spectroscopy complimented by infrared spectroscopy. The mineral is characterised by an intense Raman band at 984 cm-1, assigned to the (PO4)3- ν1 symmetric stretching mode. A shoulder band at 1037 cm-1 is attributed to the (SO4)2- ν1 symmetric stretching mode. Two Raman bands observed at 1102 and 1148 cm-1 are assigned to (PO4)3- and (SO4)2- ν3 antisymmetric stretching modes. Multiple bands provide evidence for the reduction in symmetry of both anions. This concept is supported by the multiple sulphate and phosphate bending modes. Raman spectroscopy shows that there are more than one non-equivalent water molecules in the sanjuanite structure. There is evidence that structural disorder exists, shown by the complex set of overlapping bands in the Raman and infrared spectra. At least two types of water are identified with different hydrogen bond strengths. The involvement of water in the sanjuanite structure is essential for the mineral stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two minerals diadochite and destinezite of formula Fe2(PO4,SO4)2(OH)•6H2O have been characterised by Raman spectroscopy and complimented with infrared spectroscopy. These two minerals are both found in soils and are identical except for their morphology. Diadochite is amorphous whereas destinezite is highly crystalline. The spectra of diadochite are broad and ill-defined, whereas the spectra of destinezite are intense and well defined. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman spectrum of bukovskýite, Fe3+2(OH)(SO4)(AsO4)•7H2O has been studied and compared with the Raman spectrum of an amorphous gel containing specifically Fe, As and S elements and is understood as an intermediate product in the formation of bukovskýite. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations and librational modes of hydrogen bonded water molecules, stretching and bending vibrations of hydrogen bonded (OH)- ions and Fe3+-(O,OH) units. Approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of crystalline bukovskýite and of the amorphous gel differ in that the bukovskýite spectrum is more complex, observed bands are sharp, the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of  H2O bending vibration in the spectrum of the amorphous gel may indicate the presence of weaker hydrogen bonds compared with those in bukovskýite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Columns are one of the key load bearing elements that are highly susceptible to vehicle impacts. The resulting severe damages to columns may leads to failures of the supporting structure that are catastrophic in nature. However, the columns in existing structures are seldom designed for impact due to inadequacies of design guidelines. The impact behaviour of columns designed for gravity loads and actions other than impact is, therefore, of an interest. A comprehensive investigation is conducted on reinforced concrete column with a particular focus on investigating the vulnerability of the exposed columns and to implement mitigation techniques under low to medium velocity car and truck impacts. The investigation is based on non-linear explicit computer simulations of impacted columns followed by a comprehensive validation process. The impact is simulated using force pulses generated from full scale vehicle impact tests. A material model capable of simulating triaxial loading conditions is used in the analyses. Circular columns adequate in capacity for five to twenty story buildings, designed according to Australian standards are considered in the investigation. The crucial parameters associated with the routine column designs and the different load combinations applied at the serviceability stage on the typical columns are considered in detail. Axially loaded columns are examined at the initial stage and the investigation is extended to analyse the impact behaviour under single axis bending and biaxial bending. The impact capacity reduction under varying axial loads is also investigated. Effects of the various load combinations are quantified and residual capacity of the impacted columns based on the status of the damage and mitigation techniques are also presented. In addition, the contribution of the individual parameter to the failure load is scrutinized and analytical equations are developed to identify the critical impulses in terms of the geometrical and material properties of the impacted column. In particular, an innovative technique was developed and introduced to improve the accuracy of the equations where the other techniques are failed due to the shape of the error distribution. Above all, the equations can be used to quantify the critical impulse for three consecutive points (load combinations) located on the interaction diagram for one particular column. Consequently, linear interpolation can be used to quantify the critical impulse for the loading points that are located in-between on the interaction diagram. Having provided a known force and impulse pair for an average impact duration, this method can be extended to assess the vulnerability of columns for a general vehicle population based on an analytical method that can be used to quantify the critical peak forces under different impact durations. Therefore the contribution of this research is not only limited to produce simplified yet rational design guidelines and equations, but also provides a comprehensive solution to quantify the impact capacity while delivering new insight to the scientific community for dealing with impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Raman spectrum of tyrolite, CaCu5(AsO4)2(CO3)(OH) 4.6H2O, from Brixlegg, Tyrol, Austria, is reported. Comparison with copper hydroxy-arsenate and basic carbonates was used to achieve assignments of the observed bands. The AsO43- group is characterized by two υ4 modes around 433 and 480 cm-1 plus a broad band around 840 cm-1 as the υ overlapping with the υ. The υ3 mode is observed as a single band around 355 cm -1. The CO32- υ1 mode is observed around 1035 and 1088 cm-1, although this assignment is difficult because of the in-plane OH bending vibrations at similar frequencies. Two υ4 modes are assigned to the 717 and 755 cm-1 bands. The υ3 mode is present as three bands at 1431, 1463, and 1498 cm-1. A large split caused by bridging carbonates may explain the band at 1370 cm -1. The H2O bending region shows two bands at 1635 and 1667 cm-1 together with stretching modes around 3204 and 3303 cm-1, the first associated with adsorbed H2O, while the second indicates more strongly bonded H2O. Three bands around 3534, 3438, and 3379 cm -1 are assigned to OH stretching modes of the OH groups in the crystal structure. The 202, 262, 301, 524, and 534 cm-1 bands are assigned to Cu-OH bending and stretching modes, whereas the bands around 179, 202, and 217 cm-1 are ascribed to O-(Ca, Cu)-O(H) with the O(H) at much greater distance from the cation. The bands around 503, 570, and 598 cm-1 are ascribed to the Cu-O stretching modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular structure of the mineral archerite ((K,NH4)H2PO4) has been determined and compared with that of biphosphammite ((NH4,K)H2PO4). Raman spectroscopy and infrared spectroscopy has been used to characterise these ‘cave’ minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching vibrations. The Raman band at 981 cm-1 is assigned to the HOP stretching vibration. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral woodhouseite CaAl3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites, and has been characterised by Raman spectroscopy, complimented with infrared spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of woodhouseite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research is to determine the molecular structure of the mineral hinsdalite using vibrational spectroscopy. The mineral hinsdalite (Pb,Sr)Al3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites. The mineral is interesting because it contains two oxyanions, phosphate and sulphate, which is unusual. The formation of hinsdalite offers a mechanism for the removal of phosphate from the environment. The mineral has been characterised by Raman spectroscopy and infrared spectroscopy. The spectra are then related to the molecular structure of the mineral. Bands at various wavenumbers are assigned to the different vibrational modes of hinsdalite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. The Raman spectrum is characterised by an intense sharp band at 982 cm-1 with a component band at 997 cm-1 assigned to the ν1 (PO4)3- symmetric stretching modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Hinsdalite is characterised by disordered phosphate/sulphate tetrahedra and non-equivalent phosphate units are observed in the vibrational spectrum of hinsdalite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents background of our research and result of our pilot study to find methods for convincing building users to become active building participants. We speculate this is possible by allowing and motivating users to customise and manage their own built environments. The ultimate aim of this research is to develop open, flexible and adaptive systems that bring awareness to building users to the extent they recognise spaces are for them to change rather than accept spaces are fixed and they are the ones to adapt. We argue this is possible if the architectural hardware is designed to adapt to begin with and more importantly if there are appropriate user interfaces that are designed to work with the hardware. A series of simple prototypes were made to study possibilities through making, installing and experiencing them. Ideas discussed during making and experiencing of prototypes were evaluated to generate further ideas. This method was very useful to speculate unexplored and unknown issues with respect to developing user interfaces for active buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesium minerals are important for the understanding of the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm-1 attributed CO32- ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413, 1474 cm-1 are assigned to the CO32- ν3 antisymmetric stretching modes. The CO32- ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm-1. A series of Raman bands at 708, 716, 728, 758 cm-1 are assigned to the CO32- ν2 in-plane bending mode. The Raman spectrum in the OH stretching region is characterised by bands at 3416, 3516 and 3447 cm-1. In the infrared spectrum a broad band is found at 2940 cm-1 assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm-1 are attributed to MgOH stretching modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopy has been used to study vanadates in the solid state. The molecular structure of the vanadate minerals vésigniéite [BaCu3(VO4)2(OH)2] and volborthite [Cu3V2O7(OH)2·2H2O] have been studied by Raman spectroscopy and infrared spectroscopy. The spectra are related to the structure of the two minerals. The Raman spectrum of vésigniéite is characterized by two intense bands at 821 and 856 cm−1 assigned to ν1 (VO4)3− symmetric stretching modes. A series of infrared bands at 755, 787 and 899 cm−1 are assigned to the ν3 (VO4)3− antisymmetric stretching vibrational mode. Raman bands at 307 and 332 cm−1 and at 466 and 511 cm−1 are assigned to the ν2 and ν4 (VO4)3− bending modes. The Raman spectrum of volborthite is characterized by the strong band at 888 cm−1, assigned to the ν1 (VO3) symmetric stretching vibrations. Raman bands at 858 and 749 cm−1 are assigned to the ν3 (VO3) antisymmetric stretching vibrations; those at 814 cm−1 to the ν3 (VOV) antisymmetric vibrations; that at 508 cm−1 to the ν1 (VOV) symmetric stretching vibration and those at 442 and 476 cm−1 and 347 and 308 cm−1 to the ν4 (VO3) and ν2 (VO3) bending vibrations, respectively. The spectra of vésigniéite and volborthite are similar, especially in the region of skeletal vibrations, even though their crystal structures differ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulated rail joints (IRJs) possess lower bending stiffness across the gap containing insulating endpost and hence are subjected to wheel impact. IRJs are either square cut or inclined cut to the longitudinal axis of the rails in a vertical plane. It is generally claimed that the inclined cut IRJs outperformed the square cut IRJs; however, there is a paucity of literature with regard to the relative structural merits of these two designs. This article presents comparative studies of the structural response of these two IRJs to the passage of wheels based on continuously acquired field data from joints strain-gauged closer to the source of impact. Strain signatures are presented in time, frequency, and avelet domains and the peak vertical and shear strains are systematically employed to examine the relative structural merits of the two IRJs subjected to similar real-life loading. It is shown that the inclined IRJs resist the wheel load with higher peak shear strains and lower peak vertical strains than that of the square IRJs.