111 resultados para Waste quantification
Resumo:
Consumer driven food trends are nothing new. “Organics”, gluten-free, and more recently buying “local” have all captured consumers, encouraging supermarkets around the globe and in Australia to respond. But the next emerging European food trend that may have the biggest impact on what we buy each week is “ugly food”.
Resumo:
Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.
Resumo:
Quantification of pyridoxal-5´-phosphate (PLP) in biological samples is challenging due to the presence of endogenous PLP in matrices used for preparation of calibrators and quality control samples (QCs). Hence, we have developed an LC-MS/MS method for accurate and precise measurement of the concentrations of PLP in samples (20 µL) of human whole blood that addresses this issue by using a surrogate matrix and minimizing the matrix effect. We used a surrogate matrix comprising 2% bovine serum albumin (BSA) in phosphate buffer saline (PBS) for making calibrators, QCs and the concentrations were adjusted to include the endogenous PLP concentrations in the surrogate matrix according to the method of standard addition. PLP was separated from the other components of the sample matrix using protein precipitation with trichloroacetic acid 10% w/v. After centrifugation, supernatant were injected directly into the LC-MS/MS system. Calibration curves were linear and recovery was > 92%. QCs were accurate, precise, stable for four freeze-thaw cycles, and following storage at room temperature for 17h or at -80 °C for 3 months. There was no significant matrix effect using 9 different individual human blood samples. Our novel LC-MS/MS method has satisfied all of the criteria specified in the 2012 EMEA guideline on bioanalytical method validation.
Resumo:
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Resumo:
By examining corporate social responsibility (CSR) and power within the context of the food supply chain, this paper illustrates how food retailers claim to address food waste while simultaneously setting standards that result in the large-scale rejection of edible food on cosmetic grounds. Specifically, this paper considers the powerful role of food retailers and how they may be considered to be legitimately engaging in socially responsible behaviors to lower food waste, yet implement practices that ultimately contribute to higher levels of food waste elsewhere in the supply chain. Through interviews with key actors in the Australian fresh fruit and vegetable supply chain, we highlight the existence of a legitimacy gap in corporate social responsibility whereby undesirable behaviors are pushed elsewhere in the supply chain. It is argued that the structural power held by Australia’s retail duopoly means that supermarkets are able to claim virtuous and responsible behaviors, despite counter claims from within the fresh food industry that the food supermarkets’ private quality standards mean that fresh food is wasted. We argue that the supermarkets claim CSR kudos for reducing food waste at the expense of other supply chain actors who bear both the economic cost and the moral burden of waste, and that this is a consequence of supermarkets’ remarkable market power in Australia.
Resumo:
Construction and demolition (C&D) waste have negative impacts on the environment. As a significant proportion of C&D waste is related to the design stage of a project, there is an opportunity for architects to reduce the waste. However, research suggests that many architects often do not understand the impact of their design on waste generation. Training and education are proposed by current researchers to improve architects’ knowledge; however, this has not been adequately validated as a viable approach to solving waste issues. This research investigates architects’ perceptions towards waste management in the design phase, and determines whether they feel they are adequately skilled in reducing C&D waste. Questionnaire surveys were distributed to architects from 98 architectural firms and 25 completed surveys were returned. The results show that while architects are aware of the relationship between design and waste, ‘extra time’ and ‘lack of knowledge’ are the key barriers to implementing waste reduction strategies. In addition, the majority of respondents acknowledge their lack of skill to reduce waste through design evaluation. Therefore, training programmes can be a viable strategy to enable them to address the pressing issue of C&D waste reduction.